Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 90-98
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The process of unsteady flow of incompressible viscoelastic fluid in a cylindrical tube of constant cross-section is considered. To describe the rheological properties of a viscoelastic fluid, the Kelvin–Voigt model is used and the mathematical model of this process is presented as an integro-differential partial differential equation. Within the framework of this model, the problem is to determine the pressure drop along the length of the pipe, which ensures the passage of a given flow rate of viscoelastic fluid through the pipe. This problem belongs to the class of inverse problems related to the recovery of the right parts of integro-differential equations. By replacing variables, the integro-differential equation is transformed into a third-order partial differential equation. First, a discrete analog of the problem is constructed using finite-difference approximations. To solve the resulting difference problem, we propose a special representation that allows splitting the problems into two mutually independent second-order difference problems. As a result, an explicit formula is obtained for determining the approximate value of the pressure drop along the length of the pipeline for each discrete value of the time variable. Based on the proposed computational algorithm, numerical experiments were performed for model problems.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
viscoelastic fluid, Kelvin–Voigt model, integro-differential equation, pressure drop along the length of the pipe, inverse problem.
                    
                    
                    
                  
                
                
                @article{VYURU_2022_15_4_a7,
     author = {A. R. Aliev and Kh. M. Gamzaev and A. A. Darwish and T. A. Nofal},
     title = {Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {90--98},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a7/}
}
                      
                      
                    TY - JOUR AU - A. R. Aliev AU - Kh. M. Gamzaev AU - A. A. Darwish AU - T. A. Nofal TI - Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 90 EP - 98 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a7/ LA - en ID - VYURU_2022_15_4_a7 ER -
%0 Journal Article %A A. R. Aliev %A Kh. M. Gamzaev %A A. A. Darwish %A T. A. Nofal %T Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 90-98 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a7/ %G en %F VYURU_2022_15_4_a7
A. R. Aliev; Kh. M. Gamzaev; A. A. Darwish; T. A. Nofal. Numerical method for solving the inverse problem of non-stationary flow of viscoelastic fluid in the pipe. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 90-98. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a7/
