@article{VYURU_2022_15_4_a6,
author = {O. A. Slavin and E. L. Pliskin},
title = {Method for analyzing the structure of noisy images of administrative documents},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {80--89},
year = {2022},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a6/}
}
TY - JOUR AU - O. A. Slavin AU - E. L. Pliskin TI - Method for analyzing the structure of noisy images of administrative documents JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 80 EP - 89 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a6/ LA - en ID - VYURU_2022_15_4_a6 ER -
%0 Journal Article %A O. A. Slavin %A E. L. Pliskin %T Method for analyzing the structure of noisy images of administrative documents %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 80-89 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a6/ %G en %F VYURU_2022_15_4_a6
O. A. Slavin; E. L. Pliskin. Method for analyzing the structure of noisy images of administrative documents. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 80-89. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a6/
[1] Rusinol M., Frinken V., Karatzas D., Bagdanov A.D., Llados J., “Multimodal Page Classification Inadministrative Document Image Streams”, International Journal on Document Analysis and Recognition, 17:4 (2014), 331–341 | DOI
[2] Jain R., Wigington C., “Multimodal Document Image Classification”, Document Analysis and Recognition, 2019 (2019), 71–77 | DOI
[3] Qasim S.R., Mahmood H., Shafait F., “Rethinking Table Recognition Using Graph Neural Networks”, Computer Vision and Pattern Recognition, 1 (2019), 142–147 | DOI
[4] Bellavia F., “SIFT Matching by Context Exposed”, Transactions on Pattern Analysis and Machine Intelligence, 2022 (2022), 1–17 | DOI
[5] Bay H., Tuytelaars T., Luc Van Goolab, “Speeded-Up Robust Features (SURF)”, Computer Vision and Image Understanding, 110:3 (2006), 404–417 | DOI
[6] Slavin O., Andreeva E., Paramonov N., “Matching Digital Copies of Documents Based on OCR”, Control and Modeling Problems, 2019 (2019), 177–181 | DOI
[7] Slavin O., Arlazarov V., Tarkhanov I., “Models and Methods Flexible Documents Matching Based on the Recognized Words”, Cyber-Physical Systems: Advances in Design and Modelling, 350 (2021), 173–184 | DOI
[8] Deza M.M., Deza E., Encyclopedia of Distances, Springer-Verlag, Berlin, 2009 | MR
[9] Matas J., Galambos C., Kittler J., “Robust Detection of Lines Using the Progressive Probabilistic Hough Transform”, Computer Vision and Image Understanding, 78:1 (2000), 119–137 | DOI
[10] Grompone von Gioi R., Jakubowicz J., Morel J.M., “On Straight Line Segment Detection”, Journal of Mathematical Imaging and Vision, 32 (2008), 313–347 | DOI | MR
[11] Grompone von Gioi R., Jakubowicz J., Morel J.M., Randall G., “LSD: A Fast Line Segment Detector with a False Detection Control”, Transactions on Pattern Analysis and Machine Intelligence, 32:4 (2010), 722–732 | DOI
[12] Emaletdinova L., Nazarov M., “Construction of a Fuzzy Model for Contour Selection”, Studies in Systems, Decision and Control, 417 (2022), 243–246 | DOI
[13] Zlobin P., Chernyshova Y., Sheshkus A., Arlazarov V.V., “Character Sequence Prediction Method for Training Data Creation in the Task of Text Recognition”, Machine Vision, 2021 (2021), 120840, 10 pp. | DOI
[14] Matalov D., Usilin S., Arlazarov V.V., “About Viola–Jones Image Classifier Structure in the Problem of Stamp Detection in Document Images”, Machine Vision, 2021 (2021), 11605, 16 pp. | DOI
[15] Arlazarov V., Voysyat Ju.S., Matalov D., Nikolaev D., Usilin S.A., “Evolution of the Viola-Jones Object Detection Method: A Survey”, Bulletin of the South Ural State University. Mathematical Modelling, Programming and Computer Software, 14:4 (2021), 5–23 | DOI
[16] Roy P.P., Pal U., Llados J., “Seal Detection and Recognition: An Approach for Document Indexing”, Document Analysis and Recognition, 2015 (2015), 367879, 15 pp. | DOI
[17] Katsuhiko U., “Extraction of Signature ad Seal Imprint from Bankchecks by Using Color Information”, Document Analysis and Recognition, 1995 (1995), 665–668 | DOI
[18] Matalov D., Usilin S., Arlazarov V.V., “Modification of the Viola-Jones Approach for the Detection of the Government Seal Stamp of the Russian Federation”, Machine Vision, 2019 (2019), 10411, 11 pp. | DOI
[19] Marchenko A.E., Ershov E.I., Gladilin S.A., “The System for Parsing a Document Specified by Attributes of Structural Elements and the Rrelations between Structural Elements”, Trudy ISA RAN, 67:4 (2017), 87–97 (in Russian)