Mots-clés : impulse noise, global convergence.
@article{VYURU_2022_15_4_a11,
author = {Basim A. Hassan and Hameed M. Sadiq},
title = {A new formula on the conjugate gradient method for removing impulse noise images},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {123--130},
year = {2022},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a11/}
}
TY - JOUR AU - Basim A. Hassan AU - Hameed M. Sadiq TI - A new formula on the conjugate gradient method for removing impulse noise images JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 123 EP - 130 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a11/ LA - en ID - VYURU_2022_15_4_a11 ER -
%0 Journal Article %A Basim A. Hassan %A Hameed M. Sadiq %T A new formula on the conjugate gradient method for removing impulse noise images %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 123-130 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a11/ %G en %F VYURU_2022_15_4_a11
Basim A. Hassan; Hameed M. Sadiq. A new formula on the conjugate gradient method for removing impulse noise images. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 123-130. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a11/
[1] Wei Xue, Junhong Ren, Xiao Zheng, Zhi Liu, Yueyong Liang, “A New DY Conjugate Gradient Method and Applications to Image Denoising”, Transactions on Information and Systems, 12, 2984–2990
[2] Gaohang Yua, Jinhong Huanga, Yi Zhou, “A Descent Spectral Conjugate Gradient Method for Impulse Noise Removal”, Applied Mathematics Letters, 23 (2010), 555–560 | DOI | MR
[3] Hager W.W., Zhang H., “A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search”, SIAM Journal on Optimization, 16 (2005), 170–192 | DOI | MR
[4] Nocedal J., Wright S.J., Numerical Optimization, Springer, N.Y., 2006 | MR
[5] Xian-Zhen Jiang, Jinbao Jian, “A Sufficient Descent Dai–Yuan Type Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems”, Nonlinear Dynamics, 72 (2013), 101–112 | DOI | MR
[6] Fletcher R., Reeves C.M., “Funtion Minimization by Conjagate Gradients”, Computer Journal, 7 (1964), 149–154 | DOI | MR
[7] Yuhong Dai, Ya-xiang Yuan, “A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property”, SIAM Journal on Optimization, 10:1 (1999), 177–182 | DOI | MR
[8] Yasushi N., Hideaki I., “Conjugate Gradient Methods Using Value of Objective Function for Unconstrained Optimization”, Optimization Letters, 6:5 (2011), 941–955
[9] Hassan B.A., “A New Formula for Conjugate Parameter Computation Based on the Quadratic Model”, Indonesian Journal of Electrical Engineering and Computer Science, 3 (2019), 954–961 | DOI | MR
[10] Hassan A.I., Poom Kumam, Hassan B.A., Auwal Bala Abubakar, Jamilu Abubakar, “A Derivative-Free Three-Term Hestenes–Stiefel Type Method for Constrained Nonlinear Equations and Image Restoration”, International Journal of Computer Mathematics, 99, 1041–1065 | DOI | MR
[11] Hassan B.A., Ranen M., “Using a New Type Quasi-Newton Equation for Unconstrained Optimization”, Innovation amid Global Pandemic, 2021 (2021), 118–122 | DOI
[12] Hassan B.A., Ayoob A., “On the New Quasi-Newton Equation for Unconstrained Optimization”, Computer and Civil Engineering Towards Engineering Innovations and Sustainability, 2022 (2022), 168–172 | DOI
[13] Jabba H.N., Hassan B.A., “Two-Versions of Descent Conjugate Gradient Methods for Large-Scale Unconstrained Optimization”, Indonesian Journal of Electrical Engineering and Computer Science, 22:3 (2021), 1643–1649 | DOI | MR
[14] Hassan B.A., “A Modified Quasi-Newton Methods for Unconstrained Optimization”, Journal of Pure and Applied Mathematics, 42 (2019), 504–511
[15] Polak E., Ribiere G., “Note sur la convergence de methodes de directions conjuguees”, Revue francaise d'informatique et de recherche operationnelle, 16 (1969), 35–43 (in French) | MR
[16] Zoutendijk G., “Nonlinear Programming, Computational Methods”, Integer and Nonlinear Programming, 1970, 37–86 | MR
[17] Jian-Feng Cai, Raymond H. Chan, Benedetta Morini, “Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient Type Methods, Image Processing Based on Partial Difierential Equations”, Mathematics and Visualization, 2007 (2007), 1–7 | MR
[18] Yuhong Dai, Jiye Han, Guanghui Liu, Defeng Sun, Hongxia Yin, Ya-Xiang Yuan, “Convergence Properties of Nonlinear Conjugate Gradient Methods”, SIAM Journal on Optimization, 10:2 (1999), 345–358 | MR