@article{VYURU_2022_15_4_a10,
author = {V. R. Sobol and R. O. Torishnyy},
title = {Smooth approximation of the quantile function derivatives},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {115--122},
year = {2022},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/}
}
TY - JOUR AU - V. R. Sobol AU - R. O. Torishnyy TI - Smooth approximation of the quantile function derivatives JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 115 EP - 122 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/ LA - en ID - VYURU_2022_15_4_a10 ER -
%0 Journal Article %A V. R. Sobol %A R. O. Torishnyy %T Smooth approximation of the quantile function derivatives %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 115-122 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/ %G en %F VYURU_2022_15_4_a10
V. R. Sobol; R. O. Torishnyy. Smooth approximation of the quantile function derivatives. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 115-122. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/
[1] Kibzun A.I., Kan Yu.S., Stochastic Programming Problems with Probability and Quantile Functions, John Wiley Sons, London, 1996
[2] Raik E., “The Differentiability in the Parameter of the Probability Function and Optimization of the Probability Function via the Stochastic Pseudogradient Method”, Proceedings of Academy of Sciences of the Estonian SSR. Physics. Mathematics, 24:1 (1975), 3–9 | DOI | MR
[3] Uryas'ev S., “Derivatives of Probability Functions and Some Applications”, Annals of Operations Research, 56 (1995), 287–311 | DOI | MR
[4] Henrion R., “Gradient Estimates for Gaussian Distribution Functions: Application to Probabilistically Constrained Optimization Problems”, Numerical Algebra, Control and Optimization, 2:4 (2012), 655–668 | DOI | MR
[5] Pflug G., Weisshaupt H., “Probability Gradient Estimation by Set-Valued Calculus and Applications in Network Design”, SIAM Journal on Optimization, 15:3 (2005), 898–914 | DOI | MR
[6] Sobol V.R., Torishnyi R.O., “On Smooth Approximation of Probabilistic Criteria in Stochastic Programming Problems”, SPIIRAS Proceedings, 19:1 (2020), 181–217 | DOI
[7] Sobol V., Torishnyi R., “Smooth Approximation of Probability and Quantile Functions: Vector Generalization and its Applications”, Journal of Physics: Conference Series, 1925 (2021), 012034 | DOI
[8] Torishyi R., “Application of the Second-Order Optimization Methods to the Stochastic Programming Problems with Probability Function”, Trudy MAI, 2021, no. 121, 27 pp.
[9] Cox D.R., Hinkley D.V., Theoretical Statistics, Chapman and Hall, London, 1979 | MR