Smooth approximation of the quantile function derivatives
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 115-122
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, a smooth approximation of the second-order derivatives of quantile function is provided. The convergence of approximations of the first and second order derivatives of quantile function is studied in cases when there exists a deterministic equivalent for the corresponding stochastic programming problem. The quantile function is one of common criteria in stochastic programming problems. The first-order derivative of quantile function can be represented as a ratio of partial derivatives of probability function. Using smooth approximation of probability function and its derivatives we obtain approximations of these derivatives in the form of volume integrals. Approximation of the second-order derivative is obtained directly as derivative of the first-order derivative. A numerical example is provided to evaluate the accuracy of the presented approximations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
stochastic programming, probability function, quantile function and its derivatives.
                    
                    
                    
                  
                
                
                @article{VYURU_2022_15_4_a10,
     author = {V. R. Sobol and R. O. Torishnyy},
     title = {Smooth approximation of the quantile function derivatives},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {115--122},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/}
}
                      
                      
                    TY - JOUR AU - V. R. Sobol AU - R. O. Torishnyy TI - Smooth approximation of the quantile function derivatives JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 115 EP - 122 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/ LA - en ID - VYURU_2022_15_4_a10 ER -
%0 Journal Article %A V. R. Sobol %A R. O. Torishnyy %T Smooth approximation of the quantile function derivatives %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 115-122 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/ %G en %F VYURU_2022_15_4_a10
V. R. Sobol; R. O. Torishnyy. Smooth approximation of the quantile function derivatives. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 115-122. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a10/
