Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 20-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we give new results on the study of elliptic abstract second order differential equation with variable operators coefficients under the general Robin homogeneous boundary value conditions, in the framework of UMD spaces. Here, we do not assume the differentiability of the resolvent operators. However, we suppose that the family of variable operators verifies the Labbas–Terreni assumption inspired by the sum theory and similar to the Acquistapace–Terreni one. We use Dunford calculus, interpolation spaces and semigroup theory in order to obtain existence, uniqueness and maximal regularity results for the classical solution to the problem.
Keywords: Robin boundary value conditions, analytic semigroup, maximal regularity, Dunford operational calculus.
@article{VYURU_2022_15_4_a1,
     author = {Rabah Haoua},
     title = {Differential equations of elliptic type with variable operators and homogeneous {Robin} boundary value condition in {UMD} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {20--31},
     year = {2022},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/}
}
TY  - JOUR
AU  - Rabah Haoua
TI  - Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2022
SP  - 20
EP  - 31
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/
LA  - en
ID  - VYURU_2022_15_4_a1
ER  - 
%0 Journal Article
%A Rabah Haoua
%T Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2022
%P 20-31
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/
%G en
%F VYURU_2022_15_4_a1
Rabah Haoua. Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 20-31. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/

[1] Haoua R., Medeghri A., “Robin Boundary Value Problems for Elliptic Operational Differential Equations with Variable Operators”, Electronic Journal of Differential Equations, 2015:87 (2015), 1–19 | MR

[2] Labbas R., Problèmes aux limites pour une é quation différentielle abstraite de type elliptique, Thèse dé tat, Université de Nice, 1987 (in French)

[3] Balakrishnan A.V., “Fractional Powers of Closed Operators and the Semigroups Generated by Them”, Pacific Journal of Mathematics, 10 (1960), 419–437 | DOI | MR

[4] Carracedo M.C., Sanz Alix M., The Theory of Fractional Powers of Operators, Elsevier Science, N.Y., 2001 | MR

[5] Haase M., “The Functional Calculus for Sectorial Operators”, Operator Theory: Advances and Applications, 169 (2006), 19–60 | MR

[6] Labbas R., Terreni B., “Sommes d'opé rateurs de type elliptique et parabolique”, Bollettino dell'Unione Matematica Italiana, 7 (1987), 545–569 (in Italian) | MR

[7] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Complete Abstract Differential Equations of Elliptic Type with General Robin Boundary Conditions, in UMD Spaces”, Applicable Analysis, 4:3 (2011), 523–538 | DOI | MR

[8] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Elliptic Problem with Robin Boundary Coefficient-Operator Conditions in General $L^{p}$ Sobolev Spaces and Applications”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 56–77 | DOI

[9] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Abstract Differential Equations of Elliptic Type wich General Robin Boundary Conditions in Hölder Spaces”, Applicable Analysis, 91:8 (2012), 1453–1475 | DOI | MR

[10] Bouziani F., Favini A., Labbas R., Medeghri A., “Study of Boundary Value and Transmission Problems Governed by a Class of Variable Operators Verifying the Labbas–Terreni non Commutativity Assumption”, Revista Matematica Complutense, 24 (2011), 131–168 | DOI | MR

[11] Da Prato G., Grisvard P., “Sommes d'opé rateurs linéaires et equations différentielles opérationnelles”, Journal de Mathematiques Pures et Appliquees, 54 (1975), 305–387 (in French) | MR

[12] Boutaous F., Labbas R., Sadallah B.-K., “Fractional-Power Approach for Solving Complete Elliptic Abstract Differential Equations with Variable-Operator Coefficients”, Electronic Journal of Differential Equations, 2012:5 (2012), 1–33 | MR

[13] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Sturm–Liouville Problems for an Abstract Differential Equation of Elliptic Type in UMD Spaces”, Differential and Integral Equations, 21:9 (2008), 981–1000 | MR

[14] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Huthig Pub Limited, Amsterdam, 1995 | MR

[15] Acquistapace P., Terreni B., “A Unified Approach to Abstract Linear Non Autonomous Parabolic Equations”, Rendiconti del Seminario Matematico della Università di Padova, 78 (1987), 47–107 | MR

[16] Monniaux S., Gé nérateur analytique et r égularité maimale, Grade de docteur de l'université de France-comté (in French)

[17] Agmon S., Douglis A., Niremberg L., “Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions”, Communications on Pure and Applied Mathematics, 12 (1959), 623–727 | DOI | MR

[18] Labbas R., Moussaoui M., “On the Resolution of the Heat Equation with Discontinous Coefficients”, Semigroup Forum, 60 (2000), 187–201 | DOI | MR