@article{VYURU_2022_15_4_a1,
author = {Rabah Haoua},
title = {Differential equations of elliptic type with variable operators and homogeneous {Robin} boundary value condition in {UMD} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {20--31},
year = {2022},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/}
}
TY - JOUR AU - Rabah Haoua TI - Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 20 EP - 31 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/ LA - en ID - VYURU_2022_15_4_a1 ER -
%0 Journal Article %A Rabah Haoua %T Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 20-31 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/ %G en %F VYURU_2022_15_4_a1
Rabah Haoua. Differential equations of elliptic type with variable operators and homogeneous Robin boundary value condition in UMD spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 20-31. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a1/
[1] Haoua R., Medeghri A., “Robin Boundary Value Problems for Elliptic Operational Differential Equations with Variable Operators”, Electronic Journal of Differential Equations, 2015:87 (2015), 1–19 | MR
[2] Labbas R., Problèmes aux limites pour une é quation différentielle abstraite de type elliptique, Thèse dé tat, Université de Nice, 1987 (in French)
[3] Balakrishnan A.V., “Fractional Powers of Closed Operators and the Semigroups Generated by Them”, Pacific Journal of Mathematics, 10 (1960), 419–437 | DOI | MR
[4] Carracedo M.C., Sanz Alix M., The Theory of Fractional Powers of Operators, Elsevier Science, N.Y., 2001 | MR
[5] Haase M., “The Functional Calculus for Sectorial Operators”, Operator Theory: Advances and Applications, 169 (2006), 19–60 | MR
[6] Labbas R., Terreni B., “Sommes d'opé rateurs de type elliptique et parabolique”, Bollettino dell'Unione Matematica Italiana, 7 (1987), 545–569 (in Italian) | MR
[7] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Complete Abstract Differential Equations of Elliptic Type with General Robin Boundary Conditions, in UMD Spaces”, Applicable Analysis, 4:3 (2011), 523–538 | DOI | MR
[8] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Elliptic Problem with Robin Boundary Coefficient-Operator Conditions in General $L^{p}$ Sobolev Spaces and Applications”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 56–77 | DOI
[9] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Abstract Differential Equations of Elliptic Type wich General Robin Boundary Conditions in Hölder Spaces”, Applicable Analysis, 91:8 (2012), 1453–1475 | DOI | MR
[10] Bouziani F., Favini A., Labbas R., Medeghri A., “Study of Boundary Value and Transmission Problems Governed by a Class of Variable Operators Verifying the Labbas–Terreni non Commutativity Assumption”, Revista Matematica Complutense, 24 (2011), 131–168 | DOI | MR
[11] Da Prato G., Grisvard P., “Sommes d'opé rateurs linéaires et equations différentielles opérationnelles”, Journal de Mathematiques Pures et Appliquees, 54 (1975), 305–387 (in French) | MR
[12] Boutaous F., Labbas R., Sadallah B.-K., “Fractional-Power Approach for Solving Complete Elliptic Abstract Differential Equations with Variable-Operator Coefficients”, Electronic Journal of Differential Equations, 2012:5 (2012), 1–33 | MR
[13] Cheggag M., Favini A., Labbas R., Maingot S., Medeghri A., “Sturm–Liouville Problems for an Abstract Differential Equation of Elliptic Type in UMD Spaces”, Differential and Integral Equations, 21:9 (2008), 981–1000 | MR
[14] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, Huthig Pub Limited, Amsterdam, 1995 | MR
[15] Acquistapace P., Terreni B., “A Unified Approach to Abstract Linear Non Autonomous Parabolic Equations”, Rendiconti del Seminario Matematico della Università di Padova, 78 (1987), 47–107 | MR
[16] Monniaux S., Gé nérateur analytique et r égularité maimale, Grade de docteur de l'université de France-comté (in French)
[17] Agmon S., Douglis A., Niremberg L., “Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions”, Communications on Pure and Applied Mathematics, 12 (1959), 623–727 | DOI | MR
[18] Labbas R., Moussaoui M., “On the Resolution of the Heat Equation with Discontinous Coefficients”, Semigroup Forum, 60 (2000), 187–201 | DOI | MR