Mots-clés : rational interpolation
@article{VYURU_2022_15_4_a0,
author = {B. V. Semisalov},
title = {Application of rational interpolations for solving boundary value problems with singularities},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--19},
year = {2022},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a0/}
}
TY - JOUR AU - B. V. Semisalov TI - Application of rational interpolations for solving boundary value problems with singularities JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 5 EP - 19 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a0/ LA - ru ID - VYURU_2022_15_4_a0 ER -
%0 Journal Article %A B. V. Semisalov %T Application of rational interpolations for solving boundary value problems with singularities %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 5-19 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a0/ %G ru %F VYURU_2022_15_4_a0
B. V. Semisalov. Application of rational interpolations for solving boundary value problems with singularities. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 4, pp. 5-19. http://geodesic.mathdoc.fr/item/VYURU_2022_15_4_a0/
[1] N.I. Achieser, Theory of Approximation, Frederick Ungar, N.Y., 1956 | MR
[2] L.N. Trefethen, Approximation Theory and Approximation Practice, SIAM, N.Y., 2013 | MR
[3] H.R. Stahl, “Best Uniform Rational Approximation of $x^{\alpha}$ on $[0,1]$”, Acta Mathematica, 190 (2003), 241–306 | DOI | MR
[4] Y. Nakatsukasa, O. Sete, L.N. Trefethen, “The AAA Algorithm for Rational Approximation”, Journal on Scientific Computing, 40:3 (2018), 1494–1522 | MR
[5] Semisalov B.V., “A Fast Nonlocal Algorithm for Solving Neumann–Dirichlet Boundary Value Problems with Error Control”, Numerical Methods and Programming, 17:4 (2016), 500–522 (in Russian)
[6] Semisalov B.V., “On an Approach to Numerical Solutions of the Dirichlet Problem of an Arbitrary Dimension”, Siberian Mathematical Journal, 25:1 (2022), 77–95 | MR
[7] M. Riesz, “Über einen Satz des Herrn Serge Bernstein”, Acta Mathematica, 40 (1916), 43–47 (in German) | MR
[8] W.J. Taylor, “Method of Lagrangian Curvilinear Interpolation”, Journal of Research of the National Bureau of Standards, 35 (1945), 151–155 | DOI | MR
[9] M. Dupuy, “Le calcul numérique des fonctions par l'interpolation barycentrique”, Comptes rendus de l'Academie des Sciences, 226 (1948), 158–159 (in French) | MR
[10] H.E. Salzer, “Lagrangian Interpolation at the Chebyshev Points $x_{n,\nu}=\cos(\nu\pi/n)$, $\nu=O(1)n$; Some Unnoted Advantages”, Computer Journal, 15 (1972), 156–159 | DOI | MR
[11] Babenko K.I., Fundamentals of Numerical Analysis, Nauka, M., 1986 (in Russian)
[12] Dzydyk V.K., Introduction to the Theory of Uniform Approximation of Functions by Means of Polynomials, Nauka, M., 1977 (in Russian) | MR
[13] N.J. Higham, “The Numerical Stability of Barycentric Lagrange Interpolation”, Journal of Numerical Analysis, 24:4 (2004), 547–556 | DOI | MR
[14] C. Schneider, W. Werner, “Some New Aspects of Rational Interpolation”, Mathematics of Computation, 47 (1986), 285–299 | DOI | MR
[15] T.W. Tee, L.N. Trefethen, “A Rational Spectral Collocation Method with Adaptively Transformed Chebyshev Grid Points”, SIAM Journal on Scientific Computing, 28 (2006), 1798–1811 | DOI | MR
[16] R. Baltensperger, J.-P. Berrut, B. Noël, “Exponential Convergence of a Linear Rational Interpolant Between Transformed Chebyshev Points”, Mathematics of Computation, 68 (1999), 1109–1120 | DOI | MR
[17] Semisalov B.V., Kuzmin G.A., “On the Question of Approximation of Smooth Functions with Boundary Layer Components”, Proceedings of Krasovskii Institute of Mathematics and Mechanics UB RAS, 27, no. 4, 2021, 111–124 (in Russian) | MR
[18] Idimeshev S.V., “Rational Approximation in Initial Boundary Value Problems with Fronts”, Computational Technologies, 25:2 (2020), 63–79 (in Russian)
[19] D. Gottlieb, M.Y. Hussaini, S.A. Orszag, “Theory and Application of Spectral Methods”, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984, 1–54 | MR
[20] A.M. Blokhin, A.S. Ibragimova, “Numerical Method for 2D Simulation of a Silicon MESFET with a Hydrodynamical Model Based on the Maximum Entropy Principle”, SIAM Journal on Scientific Computing, 31 (2009), 2015–2046 | DOI | MR
[21] M. Schmidt, E. Wassner, H. Münstedt, “Setup and Test of a Laser Doppler Velocimeter for Investigations of Flow Behaviour of Polymer Melts”, Mechanics of Time-Dependent Materials, 3 (1999), 371–393 | DOI
[22] K.B. Kosheleva, G.V. Pyshnograib, M.Yu. Tolstykhc, “Modeling of the Three-Dimensional Flow of Polymer Melt in a Convergent Channel of Rectangular Cross-Section”, Fluid Dynamics, 50 (2015), 315–321 | DOI | MR