Algorithm for verifying the measurements
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 134-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes the Kramers–Kronig relation for verifying the obtained values of $S$-parameters for different operation conditions of a transmission line. We obtain and prove lemmas for $S$-parameters for operation conditions of the line under short-circuit, open-circuit, and matched load. We give a comparison of theoretical and experimental values, which confirm the correctness of the obtained relations and conclusions.
Keywords: Kramers–Kronig relation, measurement, electrodynamic parameters, measurement verifying.
@article{VYURU_2022_15_3_a9,
     author = {A. L. Shestakov and D. S. Klygach and M. G. Vakhitov},
     title = {Algorithm for verifying the measurements},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {134--141},
     year = {2022},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a9/}
}
TY  - JOUR
AU  - A. L. Shestakov
AU  - D. S. Klygach
AU  - M. G. Vakhitov
TI  - Algorithm for verifying the measurements
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2022
SP  - 134
EP  - 141
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a9/
LA  - en
ID  - VYURU_2022_15_3_a9
ER  - 
%0 Journal Article
%A A. L. Shestakov
%A D. S. Klygach
%A M. G. Vakhitov
%T Algorithm for verifying the measurements
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2022
%P 134-141
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a9/
%G en
%F VYURU_2022_15_3_a9
A. L. Shestakov; D. S. Klygach; M. G. Vakhitov. Algorithm for verifying the measurements. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 134-141. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a9/

[1] Kronig R. de L., “On the Theory of the Dispersion of X-Rays”, Journal of the Optical Society of America, 1926, no. 12, 547–557 | DOI

[2] Kramers H. A., “La diffusion de la lumiere par les atomes”, Transactions of Volta Centenary Congress, 1927, no. 2, 545–557 (in French)

[3] Landau L. D., Lifshits E. M., Electrodynamics of Continuous Media, Nauka, M., 1992 (in Russian) | MR

[4] Ponomarenko V. I., Lagunov I. M., Absorbers of Electromagnetic Waves. Radiophysical Theory. Methods of Calculation, Polyprint, Simferopol, 2021 (in Russian)

[5] Toll J. S., “Causality and the Dispersion Relation: Logical Foundations”, Physical Review, 104 (1956), 1760–1770 | DOI | MR

[6] King F. W., Hilbert Transforms, Cambridge University Press, Cambridge, 2009 | MR

[7] Bracewell R., “The Hilbert Transform”, The Fourier Transform and its Applications, McGraw-Hill, New York, 1999, 267–272 | MR

[8] Papoulis A., “Hilbert Transforms”, The Fourier Integral and its Applications, McGraw-Hill, New York, 1962, 198–201 | MR

[9] Balagurov B.Ya., Electrophysical Properties of Composites. Macroscopic Theory, Lenand, M., 2018 (in Russian)