A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 127-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectral conjugate gradient method is an essential generalization of the conjugate gradient method, and it is also one of the effective numerical methods to solve large scale unconstrained optimization problems. We propose a new spectral Dai–Yuan (SDY) conjugate gradient method to solve nonlinear unconstrained optimization problems. The proposed method's global convergence was achieved under appropriate conditions, performing numerical testing on 65 benchmark tests to determine the effectiveness of the proposed method in comparison to other methods like the AMDYN algorithm and some other existing ones like Dai-Yuan method.
Keywords: unconstrained optimization, conjugate gradient method
Mots-clés : spectral conjugate gradient, sufficient descent, global convergence.
@article{VYURU_2022_15_3_a8,
     author = {Y. Najm Huda and I. Ahmed Huda},
     title = {A modification of {Dai-Yuan's} conjugate gradient algorithm for solving unconstrained optimization},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {127--133},
     year = {2022},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/}
}
TY  - JOUR
AU  - Y. Najm Huda
AU  - I. Ahmed Huda
TI  - A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2022
SP  - 127
EP  - 133
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/
LA  - en
ID  - VYURU_2022_15_3_a8
ER  - 
%0 Journal Article
%A Y. Najm Huda
%A I. Ahmed Huda
%T A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2022
%P 127-133
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/
%G en
%F VYURU_2022_15_3_a8
Y. Najm Huda; I. Ahmed Huda. A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 127-133. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/

[1] Alhawarat A., Salleh Z., “Modification of Nonlinear Conjugate Gradient Method with Weak Wolfe-Powell Line Search”, Abstract and Applied Analysis, 2017:2 (2017), 1–6 | DOI | MR

[2] Nocedal J., Yuan Ya-Xiang, “Analysis of a Self-Scaling Quasi-Newton Method”, Mathematical Programming, 61:1 (1993), 19–37 | DOI | MR

[3] Hestenes M. R., Stiefel E., “Methods of Conjugate Gradients for Solving Linear Systems”, Journal of Research of the National Bureau of Standards, 49:6, 409–435 | DOI | MR

[4] Fletcher R., Reeve C. M., “Function Minimization by Conjugate Gradients”, The Computer Journal, 7:2 (1964), 149–154 | DOI | MR

[5] Polak E., Ribiere G., “Note sur la convergence de méthodes de directions conjuguées”, Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3:1 (1969), 35–43 (in French) | MR

[6] Polyak B. T., “The Conjugate Gradient Method in Extremal Problems”, Computational Mathematics and Mathematical Physics, 9:4 (1969), 94–112 | DOI

[7] Dai Yu-Hong, Yuan Yaxiang, “A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property”, SIAM Journal on Optimization, 10:1 (1999), 177–182 | DOI | MR

[8] Dai Yu-Hong, Li-Zhi Liao, “New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods”, Applied Mathematics and Optimization, 43:1 (2001), 87–101 | DOI | MR

[9] Hassan B., Abdullah Z., Jabbar H., “A Descent Extension of the Dai-Yuan Conjugate Gradient Technique”, Indonesian Journal of Electrical Engineering and Computer Science, 16:2 (2019), 661–668 | DOI

[10] Jie Guo, Zhong Wan, “A Modified Spectral PRP Conjugate Gradient Projection Method for Solving Large-Scale Monotone Equations and its Application in Compressed Sensing”, Mathematical Problems in Engineering, 2019 (2019), 23–27 | DOI | MR

[11] Neculai A., “New Accelerated Conjugate Gradient Algorithms as a Modification of Dai–Yuan's Computational Scheme for Unconstrained Optimization”, Journal of Computational and Applied Mathematics, 234:12 (2010), 3397–3410 | DOI | MR

[12] Eman H., Rana A. Z., Abbas A. Y., “New Investigation for the Liu-Story Scaled Conjugate Gradient Method for Nonlinear Optimization”, Journal of Mathematics, 2020 (2020), 3615208, 10 pp. | DOI | MR

[13] Gaohang Yu, Lutai Guan, Wufan Chen, “Spectral Conjugate Gradient Methods with Sufficient Descent Property for Large-Scale Unconstrained Optimization”, Optimization Methods and Software, 23:2 (2008), 275–293 | DOI | MR

[14] Ibrahim Sulaiman Mohammed, Yakubu Usman Abbas, Mamat Mustafa, “Application of Spectral Conjugate Gradient Methods for Solving Unconstrained Optimization Problems”, An International Journal of Optimization and Control: Theories and Applications, 10:2 (2020), 198–205 | MR

[15] Wang Li, Cao Mingyuan, Xing Funa, Yang Yueting, “The New Spectral Conjugate Gradient Method for Large-Scale Unconstrained Optimisation”, Journal of Inequalities and Applications, 2020:1 (2020), 1–11 | DOI | MR

[16] Jian Jinbao, Yang Lin, Jiang Xianzhen, Liu Pengjie, Liu Meixing, “A Spectral Conjugate Gradient Method with Descent Property”, Mathematics, 8:2 (2020), 280, 13 pp. | DOI | MR

[17] Danhausa A. A., Odekunle R. M., Onanaye A. S., “A Modified Spectral Conjugate Gradient Method for Solving Unconstrained Minimization Problems”, Journal of the Nigerian Mathematical Society, 39:2 (2020), 223–237 | MR

[18] Al-Arbo A., Rana Al-Kawaz, “A Fast Spectral Conjugate Gradient Method for Solving Nonlinear Optimization Problems”, Indonesian Journal of Electrical Engineering and Computer Science, 21:1 (2021), 429–439 | DOI

[19] Hassan Basim, Jabbar Hawraz, “A New Spectral on the Gradient Methods for Unconstrained Optimization Minimization Problem”, Journal of Zankoy Sulaimani, 22:2 (2020), 217–224 | DOI

[20] Liu J. K., Feng Y. M., Zou L. M., “A Spectral Conjugate Gradient Method for Solving Large-Scale Unconstrained Optimization”, Computers and Mathematics with Applications, 77:3 (2019), 731–739 | DOI | MR

[21] Al-Bayati A. Y., “A New Family of Self-Scaling Variable Metric Algorithms for Unconstrained Optimization”, Journal of Education and Science, 12 (1991), 25–54

[22] Neculai A., “An Unconstrained Optimization Test Functions Collection”, Advanced Modeling and Optimization, 10:1 (2008), 147–161 | MR

[23] Neculai A., “New Accelerated Conjugate Gradient Algorithms for Unconstrained Optimization”, Technical Report, 34 (2008), 319–330

[24] Dolan E. D., More J. J., “Benchmarking Optimization Software with Performance Profiles”, Mathematical Programming, 91:2 (2002), 201–213 | DOI | MR