Mots-clés : spectral conjugate gradient, sufficient descent, global convergence.
@article{VYURU_2022_15_3_a8,
author = {Y. Najm Huda and I. Ahmed Huda},
title = {A modification of {Dai-Yuan's} conjugate gradient algorithm for solving unconstrained optimization},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {127--133},
year = {2022},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/}
}
TY - JOUR AU - Y. Najm Huda AU - I. Ahmed Huda TI - A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 127 EP - 133 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/ LA - en ID - VYURU_2022_15_3_a8 ER -
%0 Journal Article %A Y. Najm Huda %A I. Ahmed Huda %T A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 127-133 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/ %G en %F VYURU_2022_15_3_a8
Y. Najm Huda; I. Ahmed Huda. A modification of Dai-Yuan's conjugate gradient algorithm for solving unconstrained optimization. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 127-133. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a8/
[1] Alhawarat A., Salleh Z., “Modification of Nonlinear Conjugate Gradient Method with Weak Wolfe-Powell Line Search”, Abstract and Applied Analysis, 2017:2 (2017), 1–6 | DOI | MR
[2] Nocedal J., Yuan Ya-Xiang, “Analysis of a Self-Scaling Quasi-Newton Method”, Mathematical Programming, 61:1 (1993), 19–37 | DOI | MR
[3] Hestenes M. R., Stiefel E., “Methods of Conjugate Gradients for Solving Linear Systems”, Journal of Research of the National Bureau of Standards, 49:6, 409–435 | DOI | MR
[4] Fletcher R., Reeve C. M., “Function Minimization by Conjugate Gradients”, The Computer Journal, 7:2 (1964), 149–154 | DOI | MR
[5] Polak E., Ribiere G., “Note sur la convergence de méthodes de directions conjuguées”, Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 3:1 (1969), 35–43 (in French) | MR
[6] Polyak B. T., “The Conjugate Gradient Method in Extremal Problems”, Computational Mathematics and Mathematical Physics, 9:4 (1969), 94–112 | DOI
[7] Dai Yu-Hong, Yuan Yaxiang, “A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property”, SIAM Journal on Optimization, 10:1 (1999), 177–182 | DOI | MR
[8] Dai Yu-Hong, Li-Zhi Liao, “New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods”, Applied Mathematics and Optimization, 43:1 (2001), 87–101 | DOI | MR
[9] Hassan B., Abdullah Z., Jabbar H., “A Descent Extension of the Dai-Yuan Conjugate Gradient Technique”, Indonesian Journal of Electrical Engineering and Computer Science, 16:2 (2019), 661–668 | DOI
[10] Jie Guo, Zhong Wan, “A Modified Spectral PRP Conjugate Gradient Projection Method for Solving Large-Scale Monotone Equations and its Application in Compressed Sensing”, Mathematical Problems in Engineering, 2019 (2019), 23–27 | DOI | MR
[11] Neculai A., “New Accelerated Conjugate Gradient Algorithms as a Modification of Dai–Yuan's Computational Scheme for Unconstrained Optimization”, Journal of Computational and Applied Mathematics, 234:12 (2010), 3397–3410 | DOI | MR
[12] Eman H., Rana A. Z., Abbas A. Y., “New Investigation for the Liu-Story Scaled Conjugate Gradient Method for Nonlinear Optimization”, Journal of Mathematics, 2020 (2020), 3615208, 10 pp. | DOI | MR
[13] Gaohang Yu, Lutai Guan, Wufan Chen, “Spectral Conjugate Gradient Methods with Sufficient Descent Property for Large-Scale Unconstrained Optimization”, Optimization Methods and Software, 23:2 (2008), 275–293 | DOI | MR
[14] Ibrahim Sulaiman Mohammed, Yakubu Usman Abbas, Mamat Mustafa, “Application of Spectral Conjugate Gradient Methods for Solving Unconstrained Optimization Problems”, An International Journal of Optimization and Control: Theories and Applications, 10:2 (2020), 198–205 | MR
[15] Wang Li, Cao Mingyuan, Xing Funa, Yang Yueting, “The New Spectral Conjugate Gradient Method for Large-Scale Unconstrained Optimisation”, Journal of Inequalities and Applications, 2020:1 (2020), 1–11 | DOI | MR
[16] Jian Jinbao, Yang Lin, Jiang Xianzhen, Liu Pengjie, Liu Meixing, “A Spectral Conjugate Gradient Method with Descent Property”, Mathematics, 8:2 (2020), 280, 13 pp. | DOI | MR
[17] Danhausa A. A., Odekunle R. M., Onanaye A. S., “A Modified Spectral Conjugate Gradient Method for Solving Unconstrained Minimization Problems”, Journal of the Nigerian Mathematical Society, 39:2 (2020), 223–237 | MR
[18] Al-Arbo A., Rana Al-Kawaz, “A Fast Spectral Conjugate Gradient Method for Solving Nonlinear Optimization Problems”, Indonesian Journal of Electrical Engineering and Computer Science, 21:1 (2021), 429–439 | DOI
[19] Hassan Basim, Jabbar Hawraz, “A New Spectral on the Gradient Methods for Unconstrained Optimization Minimization Problem”, Journal of Zankoy Sulaimani, 22:2 (2020), 217–224 | DOI
[20] Liu J. K., Feng Y. M., Zou L. M., “A Spectral Conjugate Gradient Method for Solving Large-Scale Unconstrained Optimization”, Computers and Mathematics with Applications, 77:3 (2019), 731–739 | DOI | MR
[21] Al-Bayati A. Y., “A New Family of Self-Scaling Variable Metric Algorithms for Unconstrained Optimization”, Journal of Education and Science, 12 (1991), 25–54
[22] Neculai A., “An Unconstrained Optimization Test Functions Collection”, Advanced Modeling and Optimization, 10:1 (2008), 147–161 | MR
[23] Neculai A., “New Accelerated Conjugate Gradient Algorithms for Unconstrained Optimization”, Technical Report, 34 (2008), 319–330
[24] Dolan E. D., More J. J., “Benchmarking Optimization Software with Performance Profiles”, Mathematical Programming, 91:2 (2002), 201–213 | DOI | MR