Mots-clés : martingale.
@article{VYURU_2022_15_3_a4,
author = {G. I. Beliavsky and N. V. Danilova},
title = {Control in binary models with disorder},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {67--82},
year = {2022},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/}
}
TY - JOUR AU - G. I. Beliavsky AU - N. V. Danilova TI - Control in binary models with disorder JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 67 EP - 82 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/ LA - ru ID - VYURU_2022_15_3_a4 ER -
%0 Journal Article %A G. I. Beliavsky %A N. V. Danilova %T Control in binary models with disorder %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 67-82 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/ %G ru %F VYURU_2022_15_3_a4
G. I. Beliavsky; N. V. Danilova. Control in binary models with disorder. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 67-82. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/
[1] Zhitlukhin M. V., Shiryaev A. N., “Optimal Stopping Problems for a Brownian Motion with Disorder on a Segment”, Theory of Probability and its Applications, 58:1 (2014), 164–171
[2] A.N. Shiryaev, P.Y. Zryumov, “On the Linear and Nonlinear Generalized Bayesian Disorder Problem (Discrete Time Case)”, Optimality and Risk, Modern Trends in Mathematical Finance, 2010, 227–236 | DOI | MR
[3] H.V. Poor, O. Hadjiliadis, Quickest Detection, Cambridge University Press, Cambridge, 2009 | MR
[4] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Birkhauser Basel, Basel, 2006 | MR
[5] Shiryaev A. N., “Minimax Optimality of the Method of Cumulative Sums (Cusum) in the Case of Continuous Time”, Russian Mathematical Surveys, 51:4(310) (1996), 750–751 | DOI | MR
[6] G. Belyavsky, N. Danilova, “The Combined Monte–Carlo Method to Calculate the Capital of the Optimal Portfolio in Nonlinear of Financial Idexes”, Siberian Electronic Mathematical Reports, 2014, no. 11, 1021–1024 | MR
[7] G. Belyavsky, N. Danilova, I. Zemlyakova, “Optimal Control Problem with Disorder”, Automatics and Remote Control, 80:8 (2019), 1419–1427 | DOI | MR
[8] J. Cox, S. Ross, M. Rubinstein, “Option Pricing: a Simplified Approach”, Journal of Financial Economics, 1979, no. 7, 229–263 | DOI | MR
[9] C. Hsia, “On Binomial Option Pricing”, Journal of Financial Research, 1983, no. 6, 41–50 | DOI
[10] S. Heston, G. Zhou, “On the Rate of Convergence of Discrete-Time Contingent Claims”, Mathematical Finance, 2000, no. 10, 53–75 | DOI | MR
[11] D. Leisen, M. Reimer, “Binomial Models for Option Valuation – Examining and Improving Convergence”, Applied Mathematical Finance, 1996, no. 3, 319–346 | DOI
[12] R. Jarrow, A. Rudd, Option Pricing, Homewood, Irwin, 1983
[13] Y. Tian, “A Modified Lattice Approach to Option Pricing”, Journal of Futures Markets, 1993, no. 13, 563–577 | DOI
[14] M. Joshi, “Achieving Higher Order Convergence for the Prices of European Options in Binomial Trees”, Mathematical Finance, 2010, no. 20, 89–103 | DOI | MR
[15] Xiaoyong Xiao, “Improving Speed of Convergence for the Prices of European Options in Binomial Trees with Even Numbers of Steps”, Applied Mathematics and Computation, 2010, no. 216, 2659–2670 | DOI | MR
[16] D. Nelson, “Binomial Processes as Diffusion Approximation in Financial Models”, The Review of Financial Studies, 3:3 (1990), 393–430 | DOI | MR
[17] H. Markowitz, “Portfolio Selection”, Journal of Finance, 7:1 (1952), 77–91 | MR
[18] R. Rockafellar, S. Uryasev, “Optimization of Conditional Value–At–Risk”, Journal of Risk, 2000, no. 2, 21–42 | DOI | MR
[19] S. Shalev-Shvartz, S. Ben-David, Understanding Machine Learning, Cambrige university press, 2016
[20] M. Dixon, I. Halperin, I. Bilokon, Machine Learning and Finance, Springer, 2020
[21] Shiryaev A. N., Basics of Stochastic Financial Mathematics, MCNMO, M., 2016 (in Russian)
[22] G. Beliavsky, N. Danilova, I. Zemlyakova, “Optimal Control Problems with Disorder”, Automation and Remote Control, 80:8 (2019), 1407–1415 | MR
[23] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 1983 | MR