Control in binary models with disorder
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 67-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of dynamic control to a portfolio for a binary model with disorder. The a posteriori approach is considered, that is a disorder is detected with the subsequent clustering of the tree nodes in the process of solving the problem. On the basis of this clustering, we construct an algorithm for calculating the optimal dynamic portfolio, which is applicable for binary models with disorder. We use both symmetric and asymmetric penalties for not achieving the set control goal. Further, we analyze the possibility of using a binary model to approximate the Black–Scholes model with disorder, and investigate the possibility of reducing an $NP$-complete problem to $P$-complete problem with loss of information.
Keywords: disorder, risk, stopping time
Mots-clés : martingale.
@article{VYURU_2022_15_3_a4,
     author = {G. I. Beliavsky and N. V. Danilova},
     title = {Control in binary models with disorder},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {67--82},
     year = {2022},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/}
}
TY  - JOUR
AU  - G. I. Beliavsky
AU  - N. V. Danilova
TI  - Control in binary models with disorder
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2022
SP  - 67
EP  - 82
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/
LA  - ru
ID  - VYURU_2022_15_3_a4
ER  - 
%0 Journal Article
%A G. I. Beliavsky
%A N. V. Danilova
%T Control in binary models with disorder
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2022
%P 67-82
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/
%G ru
%F VYURU_2022_15_3_a4
G. I. Beliavsky; N. V. Danilova. Control in binary models with disorder. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 67-82. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a4/

[1] Zhitlukhin M. V., Shiryaev A. N., “Optimal Stopping Problems for a Brownian Motion with Disorder on a Segment”, Theory of Probability and its Applications, 58:1 (2014), 164–171

[2] A.N. Shiryaev, P.Y. Zryumov, “On the Linear and Nonlinear Generalized Bayesian Disorder Problem (Discrete Time Case)”, Optimality and Risk, Modern Trends in Mathematical Finance, 2010, 227–236 | DOI | MR

[3] H.V. Poor, O. Hadjiliadis, Quickest Detection, Cambridge University Press, Cambridge, 2009 | MR

[4] G. Peskir, A. Shiryaev, Optimal Stopping and Free-Boundary Problems, Birkhauser Basel, Basel, 2006 | MR

[5] Shiryaev A. N., “Minimax Optimality of the Method of Cumulative Sums (Cusum) in the Case of Continuous Time”, Russian Mathematical Surveys, 51:4(310) (1996), 750–751 | DOI | MR

[6] G. Belyavsky, N. Danilova, “The Combined Monte–Carlo Method to Calculate the Capital of the Optimal Portfolio in Nonlinear of Financial Idexes”, Siberian Electronic Mathematical Reports, 2014, no. 11, 1021–1024 | MR

[7] G. Belyavsky, N. Danilova, I. Zemlyakova, “Optimal Control Problem with Disorder”, Automatics and Remote Control, 80:8 (2019), 1419–1427 | DOI | MR

[8] J. Cox, S. Ross, M. Rubinstein, “Option Pricing: a Simplified Approach”, Journal of Financial Economics, 1979, no. 7, 229–263 | DOI | MR

[9] C. Hsia, “On Binomial Option Pricing”, Journal of Financial Research, 1983, no. 6, 41–50 | DOI

[10] S. Heston, G. Zhou, “On the Rate of Convergence of Discrete-Time Contingent Claims”, Mathematical Finance, 2000, no. 10, 53–75 | DOI | MR

[11] D. Leisen, M. Reimer, “Binomial Models for Option Valuation – Examining and Improving Convergence”, Applied Mathematical Finance, 1996, no. 3, 319–346 | DOI

[12] R. Jarrow, A. Rudd, Option Pricing, Homewood, Irwin, 1983

[13] Y. Tian, “A Modified Lattice Approach to Option Pricing”, Journal of Futures Markets, 1993, no. 13, 563–577 | DOI

[14] M. Joshi, “Achieving Higher Order Convergence for the Prices of European Options in Binomial Trees”, Mathematical Finance, 2010, no. 20, 89–103 | DOI | MR

[15] Xiaoyong Xiao, “Improving Speed of Convergence for the Prices of European Options in Binomial Trees with Even Numbers of Steps”, Applied Mathematics and Computation, 2010, no. 216, 2659–2670 | DOI | MR

[16] D. Nelson, “Binomial Processes as Diffusion Approximation in Financial Models”, The Review of Financial Studies, 3:3 (1990), 393–430 | DOI | MR

[17] H. Markowitz, “Portfolio Selection”, Journal of Finance, 7:1 (1952), 77–91 | MR

[18] R. Rockafellar, S. Uryasev, “Optimization of Conditional Value–At–Risk”, Journal of Risk, 2000, no. 2, 21–42 | DOI | MR

[19] S. Shalev-Shvartz, S. Ben-David, Understanding Machine Learning, Cambrige university press, 2016

[20] M. Dixon, I. Halperin, I. Bilokon, Machine Learning and Finance, Springer, 2020

[21] Shiryaev A. N., Basics of Stochastic Financial Mathematics, MCNMO, M., 2016 (in Russian)

[22] G. Beliavsky, N. Danilova, I. Zemlyakova, “Optimal Control Problems with Disorder”, Automation and Remote Control, 80:8 (2019), 1407–1415 | MR

[23] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 1983 | MR