On inverse problems with pointwise overdetermination for mathematical models of heat and mass transfer
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 34-50
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article is a survey devoted to inverse problems of recovering sources and coefficients (parameters of a medium) in mathematical models of heat and mass transfer. The main attention is paid to well-posedness questions of the inverse problems with pointwise overdetermination conditions. The questions of this type arise in the heat and mass transfer theory, in environmental and ecology problems, when describing diffusion and filtration processes, etc. As examples, we note the problems of determining the heat conductivity tensor or sources of pollution in a water basin or atmosphere. We describe three types of problems. The first of them is the problem of recovering point or distributed sources. We present conditions for existence and uniqueness of solutions to the problem, show non-uniqueness examples, and, in model situations, give estimates on the number of measurements that allow completely identify intensities of sources and their locations. The second problem is the problem of recovering the parameters of media, in particular, the heat conductivity. The third problem is the problem of recovering the boundary regimes, i. e. the flux through a surface or the heat transfer coefficient.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
heat and mass transfer, mathematical modelling, uniqueness, inverse problem
Mots-clés : parabolic equation, point source.
                    
                  
                
                
                Mots-clés : parabolic equation, point source.
@article{VYURU_2022_15_3_a2,
     author = {S. G. Pyatkov},
     title = {On inverse problems with pointwise overdetermination for mathematical models of heat and mass transfer},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {34--50},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a2/}
}
                      
                      
                    TY - JOUR AU - S. G. Pyatkov TI - On inverse problems with pointwise overdetermination for mathematical models of heat and mass transfer JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 34 EP - 50 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a2/ LA - en ID - VYURU_2022_15_3_a2 ER -
%0 Journal Article %A S. G. Pyatkov %T On inverse problems with pointwise overdetermination for mathematical models of heat and mass transfer %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 34-50 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a2/ %G en %F VYURU_2022_15_3_a2
S. G. Pyatkov. On inverse problems with pointwise overdetermination for mathematical models of heat and mass transfer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 34-50. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a2/
