Mots-clés : tabulation, classification.
@article{VYURU_2022_15_3_a0,
author = {A. A. Akimova},
title = {System analysis of classification of prime knots and links in thickened surfaces of genus 1 and 2},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--18},
year = {2022},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a0/}
}
TY - JOUR AU - A. A. Akimova TI - System analysis of classification of prime knots and links in thickened surfaces of genus 1 and 2 JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2022 SP - 5 EP - 18 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a0/ LA - en ID - VYURU_2022_15_3_a0 ER -
%0 Journal Article %A A. A. Akimova %T System analysis of classification of prime knots and links in thickened surfaces of genus 1 and 2 %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2022 %P 5-18 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a0/ %G en %F VYURU_2022_15_3_a0
A. A. Akimova. System analysis of classification of prime knots and links in thickened surfaces of genus 1 and 2. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 15 (2022) no. 3, pp. 5-18. http://geodesic.mathdoc.fr/item/VYURU_2022_15_3_a0/
[1] Hoste J., Thistlethwaite M., Weeks J., “The First 1,701,936 Knots”, The Mathematical Intelligencer, 20:4 (1998), 33–47 | DOI | MR
[2] Rolfsen D., Knots and Links, Publish or Perish, Berkeley, 1976 | MR
[3] Bar-Natan D., The Hoste-Thistlethwaite Link Table (accessed on July 25 2020) http://katlas.org/wiki/Main_Page
[4] Gabrovšek B., Mroczkowski M., “Knots in the Solid Torus up to 6 prossings”, Journal of Knot Theory and Its Ramifications, 21:11 (2012), 1250106, 43 pp. | DOI | MR
[5] Matveev S. V., Nabeeva L. R., “Tabulating Knots in the Thickened Klein Bottle”, Siberian Mathematical Journal, 57:3 (2016), 542–548 | DOI | MR
[6] Gabrovšek B., “Tabulation of Prime Knots in Lens Spaces”, Mediterranean Journal of Mathematics, 14:2 (2017), 88, 24 pp. | DOI | MR
[7] Green J., A Table of Virtual Knots (accessed on July 25, 2018) http://katlas.math.toronto.edu/wiki/
[8] Stenlund E., Classification of Virtual Knots (accessed on July 25 2020) http://evertstenlund.se/knots/Virtual
[9] Akimova A. A., Matveev S. V., “Classification of Genus 1 Virtual Knots Having at Most Five Classical Crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031 | DOI | MR
[10] Akimova A. A., “Classification of Prime Knots in the Thickened Surface of Genus 2 Having Diagrams with at Most 4 Crossings”, Journal of Computational and Engineering Mathematics, 7:1 (2020), 32–46 | DOI | MR
[11] Drobotukhina Yu.V., “Classification of Links in $ \mathbb{R}$ $\text{P}^3$ with at Most Six Crossings”, Notes of Scientific Seminars POMI, 193 (1991), 39–63 (in Russian) | MR
[12] Akimova A. A., “Mathematical Modelling of Biology Processes Based on the Table of Prime Links in the Solid Torus up to 4 prossings”, Journal of Physics, 1847 (2021), 012025, 12 pp. | DOI
[13] Akimova A. A., Matveev S. V., Tarkaev V. V., “Classification of Links of Small Complexity in the Thickened Torus”, Proceedings of the Steklov Institute of Mathematics, 303:12 (2018), 12–24 | DOI | MR
[14] Akimova A. A., Matveev S. V., Tarkaev V. V., “Classification of Prime Links in the Thickened Torus Having Crossing Number 5”, Journal of Knot Theory and Its Ramifications, 29:3 (2020), 2050012, 27 pp. | DOI | MR
[15] Akimova A. A., “Tabulation of Prime Links in the Thickened Surface of Genus 2 Having Diagrams with at Most 4 Crossings”, Journal of Computational and Engineering Mathematics, 7:3 (2020), 20–33 | DOI | MR
[16] Zinn-Justin P., Zuber J. B., “Matrix Integrals and the Generation and Counting of Virtual Tangles and Links”, Journal of Knot Theory and Its Ramifications, 13:3 (2004), 325–355 | DOI | MR
[17] Zinn-Justin P., Alternating Virtual Link Database (accessed on July 25, 2020) https://www.lpthe.jussieu.fr/pzinn/virtlinks/
[18] Akimova A. A., “Tabulation of Prime Projections of Links in the Thickened Surface of Genus 2 with no More Than 4 Crossings”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 12:3 (2020), 5–14 | DOI | MR
[19] Akimova A. A., “Classification of Prime Projections of Knots in the Thickened Torus of Genus 2 with at Most 4 Crossings”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 12:1 (2020), 5–13 | DOI | MR
[20] Matveev S. V., “Prime Decompositions of Knots in $T\times I$”, Topology and its Applications, 159:7 (2011), 1820–1824 | DOI | MR
[21] Kauffman L. H., “State Models and the Jones Polynomial”, Topology, 26:3 (1987), 395–407 | DOI | MR
[22] Jones V. F. R., “A Polynomial Invariant for Knots via von Neumann Algebra”, Bulletin of the American Mathematical Society, 1985, no. 12, 103–111 | DOI | MR
[23] Tarkaev V. V., Recognizer of 3D Manifolds http://www.matlas.math.csu.ru.V.F.R
[24] Akimova A. A., “Generalizations of the Kauffman Polynomial for Knots in the Thickened Surface of Genus 2”, Chelyabinsk Physical and Mathematical Journal, 5:3 (2020), 352–362 | MR
[25] Dye H. A., Kauffman L. H., “Minimal Surface Representations of Virtual Knots and Links”, Algebraic and Geometric Topology, 5 (2005), 509–535 | DOI | MR
[26] Kauffman L. H., Radford D. E., Bi-Oriented Quantum Algebras, and a Generalized Alexander Polynomial for Virtual Links, arXiv: math/0112280
[27] Culler M., Dunfield N. M., Goerner M., Weeks J. R., SnapPy, a Computer Program for Studying the Geometry and Topology of 3-Manifolds http://www.math.uic.edu/t3m/SnapPy