Non-uniqueness of solutions to boundary value problems with Wentzell condition
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 102-105
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Recently, in the mathematical literature, the Wentzell boundary condition is considered from two points of view. In the first case, let us call it classical one, this condition is an equation containing a linear combination of the values of the function and its derivatives on the boundary of the domain. Moreover, the function itself also satisfies the equation with an elliptic operator defined in the domain. In the second case, which we call neoclassical one, the Wentzell condition is an equation with the Laplace–Beltrami operator defined on the boundary of the domain understood as a smooth compact Riemannian manifold without boundary, and the external action is represented by the normal derivative of a function defined in the domain. The paper shows the non-uniqueness of solutions to boundary value problems with the Wentzell condition in the neoclassical sense both for the equation with the Laplacian and for the equation with the Bi-Laplacian given in the domain.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Wentzell condition.
                    
                    
                    
                  
                
                
                @article{VYURU_2021_14_4_a7,
     author = {N. S. Goncharov and S. A. Zagrebina and G. A. Sviridyuk},
     title = {Non-uniqueness of solutions to boundary value problems with {Wentzell} condition},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {102--105},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/}
}
                      
                      
                    TY - JOUR AU - N. S. Goncharov AU - S. A. Zagrebina AU - G. A. Sviridyuk TI - Non-uniqueness of solutions to boundary value problems with Wentzell condition JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 102 EP - 105 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/ LA - en ID - VYURU_2021_14_4_a7 ER -
%0 Journal Article %A N. S. Goncharov %A S. A. Zagrebina %A G. A. Sviridyuk %T Non-uniqueness of solutions to boundary value problems with Wentzell condition %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 102-105 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/ %G en %F VYURU_2021_14_4_a7
N. S. Goncharov; S. A. Zagrebina; G. A. Sviridyuk. Non-uniqueness of solutions to boundary value problems with Wentzell condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 102-105. http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/
