@article{VYURU_2021_14_4_a7,
author = {N. S. Goncharov and S. A. Zagrebina and G. A. Sviridyuk},
title = {Non-uniqueness of solutions to boundary value problems with {Wentzell} condition},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {102--105},
year = {2021},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/}
}
TY - JOUR AU - N. S. Goncharov AU - S. A. Zagrebina AU - G. A. Sviridyuk TI - Non-uniqueness of solutions to boundary value problems with Wentzell condition JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 102 EP - 105 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/ LA - en ID - VYURU_2021_14_4_a7 ER -
%0 Journal Article %A N. S. Goncharov %A S. A. Zagrebina %A G. A. Sviridyuk %T Non-uniqueness of solutions to boundary value problems with Wentzell condition %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 102-105 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/ %G en %F VYURU_2021_14_4_a7
N. S. Goncharov; S. A. Zagrebina; G. A. Sviridyuk. Non-uniqueness of solutions to boundary value problems with Wentzell condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 102-105. http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a7/
[1] Ventcel' A.D., “On Boundary Conditions for Multidimensional Diffusion Processes”, Theory of Probability and Its Applications, 4:2 (1960), 164–177 | MR | Zbl
[2] Luo Y., Trudinger N.S., “Linear Second Order Elliptic Equations with Venttsel Boundary Conditions”, Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, 118:3–4 (1991), 193–207 | DOI | MR | Zbl
[3] Apushkinskaya D.E., Nazarov A.I., “An Initial-Boundary Value Problem with a Venttsel' Boundary Condition for Parabolic Equations not in Divergence Form”, St. Petersburg Mathematical Journal, 6:6 (1995), 1127–1149 | MR
[4] Lukyanov V.V., Nazarov A.I., “Solving of Vent'sel Boundary-Value Problem for Laplace and Helmholtz Equations by Iterated Potentials”, Journal of Mathematical Sciences, 102:4 (2000), 4265–4274 | DOI | MR | Zbl
[5] Favini A., Goldstein G.R., Goldstein J.A., Romanelli S., “$C_0$-Semigroups Generated by Second Order Differential Operators with General Wentzell Boundary Conditions”, Proceedings of the American Mathematical Society, 128:7 (2000), 1981–1989 | DOI | MR | Zbl
[6] Favini A., Goldstein G.R., Goldstein J.A., Romanelli S., “The Heat Equation with Generalized Wentzell Boundary Condition”, Journal of Evolution Equations, 2:1 (2002), 1–19 | DOI | MR | Zbl
[7] Goldstein G.R., “Derivation and Physimathcal Interpretation of General Boundary Conditions”, Advances in Differential Equations, 4:11 (2006), 419–456 | MR
[8] Denk R., Kunze M., Ploss D., “The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains”, Integral Equations and Operator Theory, 93:2 (2021), 13 pp. | DOI | MR | Zbl
[9] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, Veb Deutscher Verlag der Wissenschaften, Berlin, 1978 | MR
[10] Warner F.W., Foundations of Differentiable Manifold and Lie Groups, Springer, New York–Berlin–Heidelberg–Tokyo, 1983 | MR
[11] Goncharov N.S., Zagrebina S.A., Sviridyuk G.A., “Showalter–Sidorov and Cauchy Problems for the Linear Dzektser Equation with Wentzel and Robin Boundary Conditions in a Bounded Domain”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2022 | Zbl