Mots-clés : Sobolev type equations
@article{VYURU_2021_14_4_a2,
author = {K. V. Perevozhikova and N. A. Manakova},
title = {Research of the optimal control problem for one mathematical model of the {Sobolev} type},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {36--45},
year = {2021},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a2/}
}
TY - JOUR AU - K. V. Perevozhikova AU - N. A. Manakova TI - Research of the optimal control problem for one mathematical model of the Sobolev type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 36 EP - 45 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a2/ LA - en ID - VYURU_2021_14_4_a2 ER -
%0 Journal Article %A K. V. Perevozhikova %A N. A. Manakova %T Research of the optimal control problem for one mathematical model of the Sobolev type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 36-45 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a2/ %G en %F VYURU_2021_14_4_a2
K. V. Perevozhikova; N. A. Manakova. Research of the optimal control problem for one mathematical model of the Sobolev type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 36-45. http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a2/
[1] Korpusov M.O., Sveshnikov A.G., “Three-Dimensional Nonlinear Evolution Equations of Pseudoparabolic Type in Problems of Mathematical Physics. II”, Computational Mathematics and Mathematical Physics, 43:12 (2003), 1835–1869 | MR | Zbl
[2] Sviridyuk G.A., “The Manifold of Solutions of an Operator Singular Pseudoparabolic Equation”, Doklady Akademii Nauk SSSR, 289:6 (1986), 1–31
[3] Manakova N.A., Sviridyuk G.A., “Non-Classical Equations of Mathematical Physics. Phase Spaces of Semilinear Sobolev Equations”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 8:3 (2016), 31–51 (in Russian) | DOI | Zbl
[4] Sviridyuk G.A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Izvestiya RAN. Seriya Matematicheskaya, 42:3 (1994), 601–614 | MR
[5] Sviridyuk G.A., Klimentev M.V., “Phase Spaces of Sobolev-Type Equations with s-Monotone or Strongly Coercive Operators”, Russian Mathematics, 38:11 (1994), 72–79 | MR | Zbl
[6] Lions J.-L., Quelques maerthodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1968 (in French) | MR
[7] Sviridyuk G.A., Efremov A.A., “Optimal Control Problem for One Class of Linear Sobolev Type Equations”, Russian Mathematics, 40:12 (1996), 60–71 | MR
[8] Manakova N.A., “Mathematical Models and Optimal Control of the Filtration and Deformation Processes”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 5–24 (in Russian) | DOI | Zbl
[9] Gavrilova O.V., “A Numerical Study of the Optimal Control Problem for Degenerate Multicomponent Mathematical Model of the Propagation of a Nerve Impulse in the System of Nerves”, Journal of Computational and Engineering Mathematics, 7:1 (2020), 47–61 | DOI
[10] Zamyshlyaeva A.A., Tsyplenkova O.N., “Optimal Control of Solutions of the Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Love Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | MR | Zbl
[11] Shestakov A.L., Sviridyuk G.A., “A New Approach to Measurement of Dynamically Perturbed Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2010, no. 16 (192), 116–120 | Zbl
[12] Shestakov A.L., Keller A.V., Zamyshlyaeva A.A., Manakova N.A., Zagrebina S.A., Sviridyuk G.A., “The Optimal Measurements Theory as a New Paradigm in the Metrology”, Journal of Computational and Engineering Mathematics, 7:1 (2020), 3–23 | DOI
[13] Lions J.-L., Singular Distributed Systems Management, Nauka, M., 1987
[14] Sviridyuk G.A., Sukacheva T.G., “Cauchy Problem for a Class of Semilinear Equations of Sobolev Type”, Siberian Mathematical Journal, 31 (1990), 794–802 | DOI | MR | Zbl
[15] Leng S., Introduction to Differentiable Manifolds, Springer, New York, 2002 | MR
[16] Manakova N.A., Vasiuchkova K.V., “Research of one Mathematical Model of the Distribution of Potentials in a Crystalline Semiconductor”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 12:2 (2019), 150–157 | DOI | Zbl