@article{VYURU_2021_14_4_a1,
author = {O. G. Kitaeva},
title = {Invariant manifolds of the {Hoff} model in {\textquotedblleft}noise{\textquotedblright} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {24--35},
year = {2021},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/}
}
TY - JOUR AU - O. G. Kitaeva TI - Invariant manifolds of the Hoff model in “noise” spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 24 EP - 35 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/ LA - en ID - VYURU_2021_14_4_a1 ER -
%0 Journal Article %A O. G. Kitaeva %T Invariant manifolds of the Hoff model in “noise” spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 24-35 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/ %G en %F VYURU_2021_14_4_a1
O. G. Kitaeva. Invariant manifolds of the Hoff model in “noise” spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 24-35. http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/
[1] Sviridyuk G.A., Sukacheva T.G., “Phase Spaces of a Class of Operator Equations”, Differential Equations, 26:2 (1990), 250–258 (in Russian) | Zbl
[2] Sviridyuk G.A., Kazak V.O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:2 (2002), 262–266 | DOI | MR | Zbl
[3] Sviridyuk G.A., Kitaeva O.G., “Invariant Manifolds of the Hoff Equation”, Mathematical Notes, 79:3 (2006), 408–412 | DOI | MR | Zbl
[4] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | DOI | MR | Zbl
[5] Sviridyuk G.A., Manakova N.A., “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive \textquotedblleft Noises\textquotedblright ”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 (in Russian) | DOI | Zbl
[6] Favini A., Sviridyuk G.A., Manakova N.A., “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015, 69741, 8 pp. | DOI | MR
[7] Favini A., Sviridyuk G.A., Sagadeeva M.A., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of \textquotedblleft Noises\textquotedblright ”, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[8] Vasiuchkova K., Manakova N.A., Sviridyuk G.A., “Degenerate Nonlinear Semigroups of Operators and their Applications”, Semigroups of Operators – Theory and Applications. SOTA, Springer Proceedings in Mathematics and Statistics, 325, Springer, Cham, 2018, 363–378 | DOI | MR
[9] Kitaeva O.G., “Invariant Spaces of Oskolkov Stochastic Linear Equations on the Manifold”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 13:2 (2021), 5–10 | DOI | Zbl
[10] Sviridyuk G.A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[11] Sviridyuk G.A., Keller A.V., “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Equations of Sobolev Type”, Russian Mathematics, 41:5 (1997), 57–65 | MR | MR | Zbl
[12] Kitaeva O.G., “Exponential Dichotomies of a Non-Classical Equations of Differential Forms on a Two-Dimensional Torus with \textquotedblleft Noises\textquotedblright ”, Journal of Computational and Engineering Mathematics, 6:3 (2019), 26–38 | DOI | MR
[13] Kitaeva O.G., “Dichotomies of Solutions to the Stochastic Ginzburg–Landau Equation on a Torus”, Journal of Computational and Engineering Mathematics, 7:4 (2020), 17–25 | DOI | MR
[14] Kitaeva O.G., “Exponential Dichotomies of a Stochastic Non-Classical Equation on a Two-Dimensional Sphere”, Journal of Computational and Engineering Mathematics, 8:1 (2021), 60–67 | DOI | MR