Invariant manifolds of the Hoff model in “noise” spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 24-35
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the study the stochastic analogue of the Hoff equation, which is a model of the deviation of an I-beam from the equilibrium position. The stability of the model is shown for some values of the parameters of this model. In the study, the model is considered as a stochastic semilinear Sobolev type equation. The obtained results are transferred to the Hoff equation, considered in specially constructed “noise” spaces. It is proved that, in the vicinity of the zero point, there exist finite-dimensional unstable and infinite-dimensional stable invariant manifolds of the Hoff equation with positive values of parameters characterizing the properties of the beam material and the load on the beam.
Keywords: the Nelson–Gliklikh derivative, stochastic Sobolev type equations, invariant manifolds.
@article{VYURU_2021_14_4_a1,
     author = {O. G. Kitaeva},
     title = {Invariant manifolds of the {Hoff} model in {\textquotedblleft}noise{\textquotedblright} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {24--35},
     year = {2021},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/}
}
TY  - JOUR
AU  - O. G. Kitaeva
TI  - Invariant manifolds of the Hoff model in “noise” spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2021
SP  - 24
EP  - 35
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/
LA  - en
ID  - VYURU_2021_14_4_a1
ER  - 
%0 Journal Article
%A O. G. Kitaeva
%T Invariant manifolds of the Hoff model in “noise” spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2021
%P 24-35
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/
%G en
%F VYURU_2021_14_4_a1
O. G. Kitaeva. Invariant manifolds of the Hoff model in “noise” spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 4, pp. 24-35. http://geodesic.mathdoc.fr/item/VYURU_2021_14_4_a1/

[1] Sviridyuk G.A., Sukacheva T.G., “Phase Spaces of a Class of Operator Equations”, Differential Equations, 26:2 (1990), 250–258 (in Russian) | Zbl

[2] Sviridyuk G.A., Kazak V.O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:2 (2002), 262–266 | DOI | MR | Zbl

[3] Sviridyuk G.A., Kitaeva O.G., “Invariant Manifolds of the Hoff Equation”, Mathematical Notes, 79:3 (2006), 408–412 | DOI | MR | Zbl

[4] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | DOI | MR | Zbl

[5] Sviridyuk G.A., Manakova N.A., “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive \textquotedblleft Noises\textquotedblright ”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 90–103 (in Russian) | DOI | Zbl

[6] Favini A., Sviridyuk G.A., Manakova N.A., “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015, 69741, 8 pp. | DOI | MR

[7] Favini A., Sviridyuk G.A., Sagadeeva M.A., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of \textquotedblleft Noises\textquotedblright ”, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl

[8] Vasiuchkova K., Manakova N.A., Sviridyuk G.A., “Degenerate Nonlinear Semigroups of Operators and their Applications”, Semigroups of Operators – Theory and Applications. SOTA, Springer Proceedings in Mathematics and Statistics, 325, Springer, Cham, 2018, 363–378 | DOI | MR

[9] Kitaeva O.G., “Invariant Spaces of Oskolkov Stochastic Linear Equations on the Manifold”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 13:2 (2021), 5–10 | DOI | Zbl

[10] Sviridyuk G.A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[11] Sviridyuk G.A., Keller A.V., “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Equations of Sobolev Type”, Russian Mathematics, 41:5 (1997), 57–65 | MR | MR | Zbl

[12] Kitaeva O.G., “Exponential Dichotomies of a Non-Classical Equations of Differential Forms on a Two-Dimensional Torus with \textquotedblleft Noises\textquotedblright ”, Journal of Computational and Engineering Mathematics, 6:3 (2019), 26–38 | DOI | MR

[13] Kitaeva O.G., “Dichotomies of Solutions to the Stochastic Ginzburg–Landau Equation on a Torus”, Journal of Computational and Engineering Mathematics, 7:4 (2020), 17–25 | DOI | MR

[14] Kitaeva O.G., “Exponential Dichotomies of a Stochastic Non-Classical Equation on a Two-Dimensional Sphere”, Journal of Computational and Engineering Mathematics, 8:1 (2021), 60–67 | DOI | MR