Mots-clés : cryptanalysis.
@article{VYURU_2021_14_3_a1,
author = {Yu. V. Kosolapov and A. A. Lelyuk},
title = {Cryptanalysis of the {BBCRS} system on {Reed{\textendash}Muller} binary code},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {18--32},
year = {2021},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/}
}
TY - JOUR AU - Yu. V. Kosolapov AU - A. A. Lelyuk TI - Cryptanalysis of the BBCRS system on Reed–Muller binary code JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 18 EP - 32 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/ LA - ru ID - VYURU_2021_14_3_a1 ER -
%0 Journal Article %A Yu. V. Kosolapov %A A. A. Lelyuk %T Cryptanalysis of the BBCRS system on Reed–Muller binary code %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 18-32 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/ %G ru %F VYURU_2021_14_3_a1
Yu. V. Kosolapov; A. A. Lelyuk. Cryptanalysis of the BBCRS system on Reed–Muller binary code. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 3, pp. 18-32. http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/
[1] McEliece R.J., “A Public-Key Cryptosystem Based On Algebraic Coding Theory”, DSN Progress Report, 1978, 42–44
[2] Sendrier N., “Finding the Permutation Between Equivalent Linear Codes: the Support Splitting Algorithm”, IEEE Transactions on Information Theory, 46:4 (2000), 1193–1203 | DOI | Zbl
[3] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov Cryptosystem”, Advances in Cryptology, 4515 (2007), 347–360 | DOI | Zbl
[4] Borodin M.A., Chizhov I.V., “Efficiency of Attack on the McEliece Cryptosystem Constructed on the Basis of Reed–Muller Codes”, Discrete Mathematics and Applications, 24:5 (2014), 273–280 | DOI | Zbl
[5] Sidel'nikov V.M., Shestakov S.O., “On an Encoding System Constructed on the Basis of Generalized Reed–Solomon Codes”, Discrete Mathematics and Applications, 2:4 (1992), 439–444 | DOI | Zbl
[6] Wieschebrink C., “Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes”, Post-Quantum Cryptography, 2010, 61–72, Darmstadt | DOI | Zbl
[7] Chizhov I.V., Borodin M.A., “Hadamard Products Classification of Subcodes of Reed-Muller Codes Codimension 1”, Discrete Mathematics and Applications, 32:1 (2020), 115–134
[8] Berger T., Loidreau P., “How to Mask the Structure of Codes for a Cryptographic Use”, Designs, Codes and Cryptography, 35:1 (2005), 63–79 | DOI | Zbl
[9] Sidelnikov V.M., “Public-Key Cryptosystem Based on Binary Reed–Muller Codes”, Discrete Mathematics and Applications, 4:3 (1994), 191–208 | DOI
[10] Egorova E., Kabatiansky G., Krouk E., Tavernier C., “A New Code-Based Public-Key Cryptosystem Resistant to Quantum Computer Attacks”, Journal of Physics, 2019, no. 1163, 1–5 | DOI | Zbl
[11] Deundyak V.M., Kosolapov Yu.V., “On the Strength of Asymmetric Code Cryptosystems Based on the Merging of Generating Matrices of Linear Codes”, Proceedings of the XVI International Symposium Problems of Redundancy in Information and Control Systems (Moscow, 2019), 143–148
[12] Baldi M., Bianchi M., Chiaraluce F., Rosenthal J., Schipani D., Enhanced Public Key Security for the McEliece Cryptosystem, arXiv: (accessed 28 July 2021) 1108.2462
[13] Randriambololona H., On Products and Powers of Linear Codes Under Componentwise Multiplication, arXiv: (accessed 28 July 2021) 1312.0022
[14] Gauthier V., Otmani A., Tillich J.-P., A Distinguisher-Based Attack on a Variant of McEliece's Cryptosystem Based on Reed–Solomon Codes, arXiv: (accessed 28 July 2021) 1204.6459
[15] Betten A., Braun M., Fripertinger H., Kerber A., Kohnert A., Wassermann A., Error-Correcting Linear Codes: Classification by Isometry and Applications, Springer, Heidelberg, 2006 | Zbl