Cryptanalysis of the BBCRS system on Reed–Muller binary code
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 3, pp. 18-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the BBCRS system which is a modification of the McEliece cryptosystem proposed by M. Baldi and some others. In this modification matrix $G_{pub}$ of the public key is the product of three matrices: a non-singular $(k\times k)$-matrix $S$, a generator matrix $G$ of a secret $[n,k]_q$-code $C_{sec}$, and a non-singular $(n\times n)$-matrix $Q$. The difference between the modified system and the original system is that the permutation matrix used in the McEliece system is replaced by a non-singular matrix $Q$. The matrix $Q$ is obtained as the sum of a permutation matrix $P$ and a matrix $R$ of small rank $r(R)$. Later, V. Gauthier and some others constructed an attack that allows decrypting messages in the case when $C_{sec}$ is a generalized Reed–Solomon code (GRS code) and $r(R)=1$. The key stages of the constructed attack are, firstly, finding the intersection of the linear span $\mathcal{L}(G_{pub})=C_{pub}$ and $\mathcal{L}(G P)=C$ that spanned on the rows of the matrices $G_{pub}$ and $G P$ respectively, and secondly, finding the code $C$ by the subcode $C_{pub}\cap C$. In this paper we present an attack in the case when $C_{sec}$ is the Reed–Muller binary code of order $r$, length $2^m$ and $r(R)=1$. The stages of finding the codes $C_{pub}\cap C$ and $C$ in this paper are completely different from the corresponding steps in attack by V. Gauthier and some others and other steps are the adaptation of the known results of cryptanalysis that applied in the case of GRS codes.
Keywords: BBCRS cryptosystem, Reed–Muller codes
Mots-clés : cryptanalysis.
@article{VYURU_2021_14_3_a1,
     author = {Yu. V. Kosolapov and A. A. Lelyuk},
     title = {Cryptanalysis of the {BBCRS} system on {Reed{\textendash}Muller} binary code},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {18--32},
     year = {2021},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/}
}
TY  - JOUR
AU  - Yu. V. Kosolapov
AU  - A. A. Lelyuk
TI  - Cryptanalysis of the BBCRS system on Reed–Muller binary code
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2021
SP  - 18
EP  - 32
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/
LA  - ru
ID  - VYURU_2021_14_3_a1
ER  - 
%0 Journal Article
%A Yu. V. Kosolapov
%A A. A. Lelyuk
%T Cryptanalysis of the BBCRS system on Reed–Muller binary code
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2021
%P 18-32
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/
%G ru
%F VYURU_2021_14_3_a1
Yu. V. Kosolapov; A. A. Lelyuk. Cryptanalysis of the BBCRS system on Reed–Muller binary code. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 3, pp. 18-32. http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a1/

[1] McEliece R.J., “A Public-Key Cryptosystem Based On Algebraic Coding Theory”, DSN Progress Report, 1978, 42–44

[2] Sendrier N., “Finding the Permutation Between Equivalent Linear Codes: the Support Splitting Algorithm”, IEEE Transactions on Information Theory, 46:4 (2000), 1193–1203 | DOI | Zbl

[3] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov Cryptosystem”, Advances in Cryptology, 4515 (2007), 347–360 | DOI | Zbl

[4] Borodin M.A., Chizhov I.V., “Efficiency of Attack on the McEliece Cryptosystem Constructed on the Basis of Reed–Muller Codes”, Discrete Mathematics and Applications, 24:5 (2014), 273–280 | DOI | Zbl

[5] Sidel'nikov V.M., Shestakov S.O., “On an Encoding System Constructed on the Basis of Generalized Reed–Solomon Codes”, Discrete Mathematics and Applications, 2:4 (1992), 439–444 | DOI | Zbl

[6] Wieschebrink C., “Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes”, Post-Quantum Cryptography, 2010, 61–72, Darmstadt | DOI | Zbl

[7] Chizhov I.V., Borodin M.A., “Hadamard Products Classification of Subcodes of Reed-Muller Codes Codimension 1”, Discrete Mathematics and Applications, 32:1 (2020), 115–134

[8] Berger T., Loidreau P., “How to Mask the Structure of Codes for a Cryptographic Use”, Designs, Codes and Cryptography, 35:1 (2005), 63–79 | DOI | Zbl

[9] Sidelnikov V.M., “Public-Key Cryptosystem Based on Binary Reed–Muller Codes”, Discrete Mathematics and Applications, 4:3 (1994), 191–208 | DOI

[10] Egorova E., Kabatiansky G., Krouk E., Tavernier C., “A New Code-Based Public-Key Cryptosystem Resistant to Quantum Computer Attacks”, Journal of Physics, 2019, no. 1163, 1–5 | DOI | Zbl

[11] Deundyak V.M., Kosolapov Yu.V., “On the Strength of Asymmetric Code Cryptosystems Based on the Merging of Generating Matrices of Linear Codes”, Proceedings of the XVI International Symposium Problems of Redundancy in Information and Control Systems (Moscow, 2019), 143–148

[12] Baldi M., Bianchi M., Chiaraluce F., Rosenthal J., Schipani D., Enhanced Public Key Security for the McEliece Cryptosystem, arXiv: (accessed 28 July 2021) 1108.2462

[13] Randriambololona H., On Products and Powers of Linear Codes Under Componentwise Multiplication, arXiv: (accessed 28 July 2021) 1312.0022

[14] Gauthier V., Otmani A., Tillich J.-P., A Distinguisher-Based Attack on a Variant of McEliece's Cryptosystem Based on Reed–Solomon Codes, arXiv: (accessed 28 July 2021) 1204.6459

[15] Betten A., Braun M., Fripertinger H., Kerber A., Kohnert A., Wassermann A., Error-Correcting Linear Codes: Classification by Isometry and Applications, Springer, Heidelberg, 2006 | Zbl