Mots-clés : quantile criterion
@article{VYURU_2021_14_3_a0,
author = {S. V. Ivanov and V. N. Akmaeva},
title = {Two-stage stochastic facility location model with quantile criterion and choosing reliability level},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--17},
year = {2021},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a0/}
}
TY - JOUR AU - S. V. Ivanov AU - V. N. Akmaeva TI - Two-stage stochastic facility location model with quantile criterion and choosing reliability level JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 5 EP - 17 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a0/ LA - en ID - VYURU_2021_14_3_a0 ER -
%0 Journal Article %A S. V. Ivanov %A V. N. Akmaeva %T Two-stage stochastic facility location model with quantile criterion and choosing reliability level %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 5-17 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a0/ %G en %F VYURU_2021_14_3_a0
S. V. Ivanov; V. N. Akmaeva. Two-stage stochastic facility location model with quantile criterion and choosing reliability level. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 3, pp. 5-17. http://geodesic.mathdoc.fr/item/VYURU_2021_14_3_a0/
[1] Kibzun A.I., Kan Yu.S., Stochastic Programming Problems with Probabilistic Criterions, Fizmatlit, M., 2009 (in Russian)
[2] Laporte G., Nickel S., Saldanha da Gama F., Location Science, Springer, Cham, 2019 | DOI
[3] Snyder L.V., “Facility Location Under Uncertainty: a Review”, IIE Transactions, 38:7 (2006), 547–564 | DOI
[4] Daskin M.S., Hesse S.M., Revella C.S., “$\alpha$-Reliable $p$-Minimax Regret: a New Model for Strategic Facility Location Modeling”, Location Science, 5:4 (1997), 227–246 | DOI | Zbl
[5] Gang Chen, Daskin M.S., Zuo-Jun Max Shen, Uryasev S., “The $\alpha$-Reliable Mean-Excess Regret Model for Stochastic Facility Location Modeling”, Naval Research Logistics, 53:7 (2006), 617–626 | DOI | Zbl
[6] Shaopeng Zhong, Rong Cheng, Yu Jiang, Zhong Wang, Larsen A., Nielsen O.A., “Risk-Averse Optimization of Disaster Relief Facility Location and Vehicle Routing Under Stochastic Demand”, Transportation Research Part E: Logistics and Transportation Review, 141 (2020), 102–115 | DOI
[7] Ivanov S.V., Morozova M.V., “Stochastic Problem of Competitive Location of Facilities with Quantile Criterion”, Automation and Remote Control, 77:3 (2016), 45–461 | DOI
[8] Melnikov A., Beresnev V., “Upper Bound for the Competitive Facility Location Problem with Quantile Criterion”, Lecture Notes in Computer Science, 9869, 2016, 373–387 | DOI | Zbl
[9] Beresnev V., Melnikov A., “$\varepsilon$-Constraint Method for Bi-Objective Competitive Facility Location Problem with Uncertain Demand Scenario”, EURO Journal on Computational Optimization, 8 (2020), 33–59 | DOI | Zbl
[10] Shapiro A., Dentcheva D., Ruszczyński A., Lectures on Stochastic Programming. Modeling and Theory, SIAM, Philadelphia, 2014 | DOI | Zbl
[11] Louveaux F.V., Peeters D., “A Dual-Based Procedure for Stochastic Facility Location”, Operations Research, 40:3, 564–573 | DOI | Zbl
[12] Santoso T., Ahmed S., Goetschalckx M., Shapiro A., “A Stochastic Programming Approach for Supply Chain Network Design Under Uncertainty”, European Journal of Operational Research, 167 (2005), 96–115 | DOI | Zbl
[13] Ivanov S.V., Kibzun A.I., “Sample Average Approximation in a Two-Stage Stochastic Linear Program with Quantile Criterion”, Proceedings of the Steklov Institute of Mathematics, 303:1 (2018), 115–123 | DOI
[14] Ivanov S.V., Kibzun A.I., “On the Convergence of Sample Approximations for Stochastic Programming Problems with Probabilistic Criteria”, Automation and Remote Control, 79:2 (2018), 216–228 | DOI | Zbl
[15] Norkin V.I., Kibzun A.I., Naumov A.V., “Reducing Two-Stage Probabilistic Optimization Problems with Discrete Distribution of Random Data to Mixed-Integer Programming Problems”, Cybernetics and Systems Analysis, 50:5 (2014), 679–692 | DOI | Zbl