Mots-clés : convective transport equation, mobile point source
@article{VYURU_2021_14_2_a7,
author = {Kh. M. Gamzaev},
title = {The problem of identifying the trajectory of a mobile point source in the convective transport equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {78--84},
year = {2021},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - The problem of identifying the trajectory of a mobile point source in the convective transport equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 78 EP - 84 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/ LA - en ID - VYURU_2021_14_2_a7 ER -
%0 Journal Article %A Kh. M. Gamzaev %T The problem of identifying the trajectory of a mobile point source in the convective transport equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 78-84 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/ %G en %F VYURU_2021_14_2_a7
Kh. M. Gamzaev. The problem of identifying the trajectory of a mobile point source in the convective transport equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 2, pp. 78-84. http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/
[1] Anderson D., Tannehill K., Pletcher R., Computational Fluid Mechanics and Heat Transfer, Taylor and Francis, New York, 1984
[2] Whitham G. B., Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974
[3] Roache P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976
[4] Samarskii A. A., The Theory of Difference Schemes, Marcel Dekker, New York, 2001
[5] Bugai D. A., “Locally One Dimensional Difference Scheme for the Convective Diffusion Equation”, Journal of Mathematical Sciences, 72:2 (1999), 3021–3024 | DOI
[6] Alifanov O. M., Artioukhine E. A., Rumyantsev S. V., Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995
[7] Samarskii A. A., Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2008
[8] Sara Zahedi, “Delta Function Approximations in Level Set Methods by Distance Function Extension”, Journal of Computational Physics, 229:6 (2010), 2199–2219 | DOI
[9] Vabishchevich P. N., “Computational Algorithms for Solving the Coefficient Inverse Problem for Parabolic Equations”, Inverse Problems in Science and Engineering, 24:1 (2016), 42–59 | DOI
[10] Gamzaev Kh.M., “A Numerical Method to Solve Identification Problem for the Lower Coefficient and the Source in the Convection-Reaction Equation”, Cybernetics and Systems Analysis, 54:6 (2018), 971–976
[11] Gamzaev Kh.M., “On One Inverse Problem of Phase Transformation in Solids”, Technical Physics, 63:8 (2018), 1087–1091