The problem of identifying the trajectory of a mobile point source in the convective transport equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 2, pp. 78-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of identifying the trajectory of a mobile point source described by the Delta function in a one-dimensional linear convective transport equation under a given additional boundary condition. To solve this problem, the Delta function is approximated by a continuous function and a discrete analog of the problem is constructed using finite-difference approximations in the form of an implicit difference scheme. To solve the resulting difference problem, we propose a special representation that allows to split the problem into two mutually independent linear first-order difference problems at each discrete value of a time variable. The result is an explicit formula for determining the position of a mobile point source for each discrete value of a time variable. Based on the proposed computational algorithm, numerical experiments were performed for model problems.
Keywords: identification problem, source motion law, delta function approximation.
Mots-clés : convective transport equation, mobile point source
@article{VYURU_2021_14_2_a7,
     author = {Kh. M. Gamzaev},
     title = {The problem of identifying the trajectory of a mobile point source in the convective transport equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {78--84},
     year = {2021},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/}
}
TY  - JOUR
AU  - Kh. M. Gamzaev
TI  - The problem of identifying the trajectory of a mobile point source in the convective transport equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2021
SP  - 78
EP  - 84
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/
LA  - en
ID  - VYURU_2021_14_2_a7
ER  - 
%0 Journal Article
%A Kh. M. Gamzaev
%T The problem of identifying the trajectory of a mobile point source in the convective transport equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2021
%P 78-84
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/
%G en
%F VYURU_2021_14_2_a7
Kh. M. Gamzaev. The problem of identifying the trajectory of a mobile point source in the convective transport equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 2, pp. 78-84. http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a7/

[1] Anderson D., Tannehill K., Pletcher R., Computational Fluid Mechanics and Heat Transfer, Taylor and Francis, New York, 1984

[2] Whitham G. B., Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974

[3] Roache P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976

[4] Samarskii A. A., The Theory of Difference Schemes, Marcel Dekker, New York, 2001

[5] Bugai D. A., “Locally One Dimensional Difference Scheme for the Convective Diffusion Equation”, Journal of Mathematical Sciences, 72:2 (1999), 3021–3024 | DOI

[6] Alifanov O. M., Artioukhine E. A., Rumyantsev S. V., Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995

[7] Samarskii A. A., Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2008

[8] Sara Zahedi, “Delta Function Approximations in Level Set Methods by Distance Function Extension”, Journal of Computational Physics, 229:6 (2010), 2199–2219 | DOI

[9] Vabishchevich P. N., “Computational Algorithms for Solving the Coefficient Inverse Problem for Parabolic Equations”, Inverse Problems in Science and Engineering, 24:1 (2016), 42–59 | DOI

[10] Gamzaev Kh.M., “A Numerical Method to Solve Identification Problem for the Lower Coefficient and the Source in the Convection-Reaction Equation”, Cybernetics and Systems Analysis, 54:6 (2018), 971–976

[11] Gamzaev Kh.M., “On One Inverse Problem of Phase Transformation in Solids”, Technical Physics, 63:8 (2018), 1087–1091