@article{VYURU_2021_14_2_a4,
author = {S. I. Kadchenko and L. S. Ryazanova and Yu. R. Dzhiganchina},
title = {Algorithm for numerical solution of inverse spectral problems generated by {Sturm{\textendash}Liouville} operators of an arbitrary even order},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {52--63},
year = {2021},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a4/}
}
TY - JOUR AU - S. I. Kadchenko AU - L. S. Ryazanova AU - Yu. R. Dzhiganchina TI - Algorithm for numerical solution of inverse spectral problems generated by Sturm–Liouville operators of an arbitrary even order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 52 EP - 63 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a4/ LA - en ID - VYURU_2021_14_2_a4 ER -
%0 Journal Article %A S. I. Kadchenko %A L. S. Ryazanova %A Yu. R. Dzhiganchina %T Algorithm for numerical solution of inverse spectral problems generated by Sturm–Liouville operators of an arbitrary even order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 52-63 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a4/ %G en %F VYURU_2021_14_2_a4
S. I. Kadchenko; L. S. Ryazanova; Yu. R. Dzhiganchina. Algorithm for numerical solution of inverse spectral problems generated by Sturm–Liouville operators of an arbitrary even order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 2, pp. 52-63. http://geodesic.mathdoc.fr/item/VYURU_2021_14_2_a4/
[1] Sadovnichy V. A., Dubrovsky V. V., “Remarks on One New Method for Calculating Eigenvalues and Eigenfunctions of Discrete Operators”, Trudy seminara imeni I. G. Petrovskogo, 17, 1994, 244–248 (in Russian)
[2] Kadchenko S. I., Kakushkin S. N., “Numerical Method for Finding the Eigenvalues and Eigenfunctions of Perturbed Self-Adjoint Operators”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2012, no. 27(286), 45–57 (in Russian)
[3] Kadchenko S. I., Zakirova G. A., “A Numerical for Inverse Spectral Problem”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 116–126 | DOI
[4] Kadchenko S. I., Zakirova G. A., Ryazanova L. S., Torshina O. A., “Calculation of Eigenvalues with Large Numbers of Spectral Problems by the Modified Galerkin Method”, Actual Problems of Modern Science, Technology and Education, 10:1 (2019), 148–152
[5] Dubrovsky V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichy V. A., “Calculation of the First Eigenvalues of the Orr-Sommerfeld Boundary Value Problem Using the Theory of Regularized Traces”, Electromagnetic Waves and Electronic Systems, 2:6 (1997), 13–19 (in Russian)
[6] Zakirova G.A., Kadchenko S.I., Kadchenko A.I., Ryazanova L.S., “Discrete Semi-Bounded Operators and the Galerkin Method”, Vth All-Russia Scientific-Practical Conference “Mathematical Modeling of Processes and Systems” (Sterlitamak, 2016), 266–272 (in Russian)
[7] Kadchenko S. I., “Numerical Method for Solving Inverse Problems Generated by Perturbed Self-Adjoint Operators”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:4 (2013), 15–25 (in Russian)
[8] Behiri S. E., Kazaryan A. R., Khachatryan I. G., “Asymptotic Formula for Eigenvalues of a Regular Two-Term Differential Operator of Arbitrary Even Order”, Scientific Notes of the Yerevan State University. Natural Sciences, 1994, no. 1, 3–18 (in Russian)
[9] Naimark M. A., Linear Differential Operators, Nauka, M., 1960 (in Russian)
[10] Mikhailov V. P., “On Riesz Bases in $L^2(0,1)$”, Doklady Mathematics, 144:5 (1962), 981–984 (in Russian)
[11] Keselman G. M., “On the Unconditional Convergence of Expansions in Eigenfunctions of Some Differential Operators”, Russian Mathematics (Izvestiya VUZ. Matematika), 1964, no. 2(39), 82–93 (in Russian)
[12] Tikhonov A. N., Arsenin V. Y., Methods for Solving Ill-Posed Problems, Nauka, M., 1979 (in Russian)
[13] Tikhonov A. N., “Regularization of Ill-Posed Problems”, Doklady Mathematics, 153:1 (1963), 49–52 (in Russian)
[14] Tikhonov A. N., “On Ill-Posed Problems in Linear Algebra and a Stable Method for Their Solution”, Doklady Mathematics, 163:6 (1965), 591–595 (in Russian)
[15] Golikov A. I., Evtushenko Yu. G., “Regularization and Normal Solutions of Systems of Linear Equations and Inequalities”, Proceedings of the Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 20, no. 2, 2014, 113–121 (in Russian)
[16] Chechkin A. V., “Special Regulator A. N. Tikhonov for Integral Equations of the First Kind”, Computational Mathematics and Mathematical Physics, 10:2 (1970), 453–461 (in Russian)