On the Pompeiu integral and its generalizations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 60-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates of the classical Pompeiu integral defined on the whole complex plane with the singular points $z=0$ and $z=\infty$ in the scale of weighted Holder and Lebegue spaces are given. This integral plays the key role in the theory of generalized analytic functions by I.N. Vekua, which is widely used in modeling different processes including transonic gas flows, momentless tense states of equilibrium of convex shells and many others. More exactly, the weighted exponents $\lambda$ for which this operator is bounded as an operator from a weighted space $L^p_\lambda$ of functions summable to the $p$-th power in the weighted space $C^\mu_{\lambda+1}$ of Hölder functions. Similar estimates in these spaces for integrals with difference kernels are also established. Applications of these results to first order elliptic systems on the plane which includes mathematical models of plane elasticity theory (the Lame system) in the general anisotropic case and play the central role in the theory of generalized analytic functions by I.N. Vekua.
Keywords: Pompeiu integral, generalized Pompeiu integral, integrals with difference kernels, mathematical models of elasticity theory.
Mots-clés : weighted Hölder and Sobolev spaces
@article{VYURU_2021_14_1_a4,
     author = {A. P. Soldatov},
     title = {On the {Pompeiu} integral and its generalizations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {60--74},
     year = {2021},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a4/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - On the Pompeiu integral and its generalizations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2021
SP  - 60
EP  - 74
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a4/
LA  - ru
ID  - VYURU_2021_14_1_a4
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T On the Pompeiu integral and its generalizations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2021
%P 60-74
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a4/
%G ru
%F VYURU_2021_14_1_a4
A. P. Soldatov. On the Pompeiu integral and its generalizations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 60-74. http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a4/

[1] Vekua I.N., Generalized Analytic Functions, Pergamon, Oxford, 1962

[2] Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970

[3] Sobolev S. L., Applications of Functional Analysis in Mathematical Physics, Mathematical Society, Providence, 1963

[4] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975

[5] Bers L., John F., Schechter M., Partial Differential Equations, Interscience, New York, 1964

[6] Soldatov A.P., “Singular Integral Operators and Elliptic Boundary Value Problems”, Journal of Mathematical Sciences, 245:6 (2020), 695–891

[7] Koshanov B.D., Soldatov A.P., “Boundary Value Problem with Normal Derivatives for a Higher-Order Elliptic Equation on the Plane”, Differential Equations, 52:12 (2016), 1–16

[8] Soldatov A.P., Chernova O.V., The Riemann–Hilbert Problem for First Order Elliptic Systems on the Plane with Constant Elder Coefficients, Itogi nauki i tekhniki, Sovremennaya matematika i prilozheniya, VINITY RAN, M., 2018 (in Russian)