Mots-clés : Sobolev type equation
@article{VYURU_2021_14_1_a1,
author = {E. V. Bychkov},
title = {Analytical study of the mathematical model of wave propagation in shallow water by the {Galerkin} method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {26--38},
year = {2021},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/}
}
TY - JOUR AU - E. V. Bychkov TI - Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 26 EP - 38 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/ LA - en ID - VYURU_2021_14_1_a1 ER -
%0 Journal Article %A E. V. Bychkov %T Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 26-38 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/ %G en %F VYURU_2021_14_1_a1
E. V. Bychkov. Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 26-38. http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/
[1] I.L. Bogolubsky, “Some Examples of Inelastic Soliton Interaction”, Computational Physics Communications, 13:2 (1977), 49–55 | DOI
[2] P.A. Clarkson, R.J. Leveque, R. Saxton, “Solitary Wave Interactions in Elastic Rods”, Studies in Applied Mathematics, 75:1 (1986), 95–122 | DOI
[3] Shubin Wang, Guowang Chen, “Small Amplitude Solutions of the Generalized IMBq Equation”, Journal Mathematical Analysis Applied, 274 (2002), 846–866 | DOI
[4] Arkhipov D. G., Khabakhpashev G. A., “New Equation for the Description of Inelastic Interaction of Nonlinear Localized Waves in Dispersive Media”, Journal of Experimental and Theoretical Physics Letters, 93:8 (2011), 423–426 | DOI
[5] Weiguo Zhang, Wenxiu Ma, “Explicit Solitary–Wave Solutions to Generalized Pochhammer–Chree Equations”, Applied Mathematics and Mechanics, 20:6 (1999), 625–632 | DOI
[6] Xu Runzhang, Liu Yacheng, “Global Existence and Blow-Up of Solutions for Generalized Pochhammer–Chree Equations”, Acta Mathematica Scientia, 30:5 (2010), 1793–1807 | DOI
[7] R.E. Showalter, “Sobolev Equations for Nonlinear Dispersive Systems”, Applicable Analysis, 7:4 (1977), 279–287 | DOI
[8] Sviridyuk G. A., Sukacheva T. G., “Phase Spaces of a Class of Operator Equations”, Differential Equations, 26:2 (1990), 250–258 (in Russian)
[9] Sviriduyk G. A., Zamyshlyaeva A. A., “The Phase Space of a Class of Linear Higher Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI
[10] Zamyshlyaeva A. A., Bychkov E. V., “The Cauchy Problem for the Sobolev Type Equation of Higher Order”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:1 (2018), 5–14 | DOI
[11] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI
[12] Zamyshlyaeva A. A., “The Higher-Order Sobolev-Type Models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 5–28 (in Russian) | DOI
[13] Sviridyuk G. A., “On the Solvability of a Singular System of Ordinary Differential Equations”, Differential Equations, 23:9 (1987), 1637–1639 (in Russian)
[14] Chistyakov V. F., Chistyakova E. V., “Linear Differential-Algebraic Equations Perturbed by Volterra Integral Operators”, Differential Equations, 53:10 (2017), 1274–1287 | DOI
[15] Zamyshlyaeva A. A., Lut A. V., “Numerical Investigation of the Boussinesq–Löve Mathematical Models on Geometrical Graphs”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:2 (2017), 137–143 | DOI
[16] D.E. Shafranov, O.G. Kitaeva, “The Barenblatt – Zheltov – Kochina Model with the Showalter – Sidorov Condition and Additive \flqq White Noise\frqq in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 145–159
[17] Manakova N. A., Bogatyreva E. A., “On a Solution of the Dirichlet–Cauchy Problem for the Barenblatt–Gilman Equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 7 (2014), 52–60 (in Russian)
[18] Bogatyreva E. A., Manakova N. A., “Numerical Simulation of the Process of Nonequilibrium Counterflow Capillary Imbibition”, Computational Mathematics and Mathematical Physics, 56:1 (2016), 132–139 | DOI
[19] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu.D., Linear and Nonlinear Sobolev Type Equation, Fizmatlit, M., 2007 (in Russian)
[20] A.V. Keller, “On the Computational Efficiency of the Algorithm of the Numerical Solution of Optimal Control Problems for Models of Leontieff Type”, Journal of Computational and Engineering Mathematics, 2:2 (2015), 39–59 | DOI
[21] Lions J. L., Sur Quelques Methodes de Resolution des Problemes aux Limites non Linears, Dunod, Gauthier Villars, Paris, 1969 (in French)
[22] Hartman P., Ordinary Differential Equations, John Wiley and Sons, New York–London–Sydney, 1964
[23] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978 (in German)
[24] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev-Type Equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 (in Russian)