Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 26-38
Voir la notice de l'article provenant de la source Math-Net.Ru
Of concern is an initial-boundary value problem for the modified Boussinesq equation (IMBq equation) is considered. The equation is often used to describe the propagation of waves in shallow water under the condition of mass conservation in the layer and taking into account capillary effects. In addition, it is used in the study of shock waves. The modified Boussinesq equation belongs to the Sobolev type equations. Earlier, using the theory of relatively $p$-bounded operators, the theorem of existence and uniqueness of the solution to the initial-boundary value problem was proved. In this paper, we will prove that the solution constructed by the Galerkin method using the system orthornormal eigenfunctions of the homogeneous Dirichlet problem for the Laplace operator converges $^*$-weakly to an precise solution. Based on the compactness method and Gronwall's inequality, the existence and uniqueness of solutions to the Cauchy–Dirichlet and the Showalter–Sidorov–Dirichlet problems for the modified Boussinesq equation are proved.
Keywords:
modified Boussinesq equation, initial-boundary value problem, Galerkin method, $^*$-weak convergence.
Mots-clés : Sobolev type equation
Mots-clés : Sobolev type equation
@article{VYURU_2021_14_1_a1,
author = {E. V. Bychkov},
title = {Analytical study of the mathematical model of wave propagation in shallow water by the {Galerkin} method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {26--38},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/}
}
TY - JOUR AU - E. V. Bychkov TI - Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 26 EP - 38 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/ LA - en ID - VYURU_2021_14_1_a1 ER -
%0 Journal Article %A E. V. Bychkov %T Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 26-38 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/ %G en %F VYURU_2021_14_1_a1
E. V. Bychkov. Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 26-38. http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a1/