On evolutionary inverse problems for mathematical models of heat and mass transfer
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 5-25

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a survey. The results on well-posedness of inverse problems for mathematical models of heat and mass transfer are presented. The unknowns are the coefficients of a system or the right-hand side (the source function). The overdetermination conditions are values of a solution of some manifolds or integrals of a solution with weight over the spatial domain. Two classes of mathematical models are considered. The former includes the Navier–Stokes system, the parabolic equations for the temperature of a fluid, and the parabolic system for concentrations of admixtures. The right-hand side of the system for concentrations is unknown and characterizes the volumetric density of sources of admixtures in a fluid. The unknown functions depend on time and some part of spacial variables and occur in the right-hand side of the parabolic system for concentrations. The latter class is just a parabolic system of equations, where the unknowns occur in the right-hand side and the system as coefficients. The well-posedness questions for these problems are examined, in particular, existence and uniqueness theorems as well as stability estimates for solutions are exposed.
Keywords: inverse problem, heat and mass transfer, well-posedness.
Mots-clés : filtration, diffusion
@article{VYURU_2021_14_1_a0,
     author = {S. G. Pyatkov},
     title = {On evolutionary inverse problems for mathematical models of heat and mass transfer},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--25},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - On evolutionary inverse problems for mathematical models of heat and mass transfer
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2021
SP  - 5
EP  - 25
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/
LA  - en
ID  - VYURU_2021_14_1_a0
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T On evolutionary inverse problems for mathematical models of heat and mass transfer
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2021
%P 5-25
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/
%G en
%F VYURU_2021_14_1_a0
S. G. Pyatkov. On evolutionary inverse problems for mathematical models of heat and mass transfer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/