On evolutionary inverse problems for mathematical models of heat and mass transfer
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 5-25
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is a survey. The results on well-posedness of inverse problems for mathematical models of heat and mass transfer are presented. The unknowns are the coefficients of a system or the right-hand side (the source function). The overdetermination conditions are values of a solution of some manifolds or integrals of a solution with weight over the spatial domain. Two classes of mathematical models are considered. The former includes the Navier–Stokes system, the parabolic equations for the temperature of a fluid, and the parabolic system for concentrations of admixtures. The right-hand side of the system for concentrations is unknown and characterizes the volumetric density of sources of admixtures in a fluid. The unknown functions depend on time and some part of spacial variables and occur in the right-hand side of the parabolic system for concentrations. The latter class is just a parabolic system of equations, where the unknowns occur in the right-hand side and the system as coefficients. The well-posedness questions for these problems are examined, in particular, existence and uniqueness theorems as well as stability estimates for solutions are exposed.
Keywords:
inverse problem, heat and mass transfer, well-posedness.
Mots-clés : filtration, diffusion
Mots-clés : filtration, diffusion
@article{VYURU_2021_14_1_a0,
author = {S. G. Pyatkov},
title = {On evolutionary inverse problems for mathematical models of heat and mass transfer},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--25},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/}
}
TY - JOUR AU - S. G. Pyatkov TI - On evolutionary inverse problems for mathematical models of heat and mass transfer JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2021 SP - 5 EP - 25 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/ LA - en ID - VYURU_2021_14_1_a0 ER -
%0 Journal Article %A S. G. Pyatkov %T On evolutionary inverse problems for mathematical models of heat and mass transfer %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2021 %P 5-25 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/ %G en %F VYURU_2021_14_1_a0
S. G. Pyatkov. On evolutionary inverse problems for mathematical models of heat and mass transfer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 14 (2021) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/VYURU_2021_14_1_a0/