Mots-clés : Liouville equation, matrix equations, exact solutions.
@article{VYURU_2020_13_4_a3,
author = {A. A. Kosov and E. I. Semenov},
title = {Anisotropic solutions of a nonlinear kinetic model of elliptic type},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {48--57},
year = {2020},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/}
}
TY - JOUR AU - A. A. Kosov AU - E. I. Semenov TI - Anisotropic solutions of a nonlinear kinetic model of elliptic type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2020 SP - 48 EP - 57 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/ LA - ru ID - VYURU_2020_13_4_a3 ER -
%0 Journal Article %A A. A. Kosov %A E. I. Semenov %T Anisotropic solutions of a nonlinear kinetic model of elliptic type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2020 %P 48-57 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/ %G ru %F VYURU_2020_13_4_a3
A. A. Kosov; E. I. Semenov. Anisotropic solutions of a nonlinear kinetic model of elliptic type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/
[1] Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn, D. Tolstonogov, “Steady State Solutions of the Vlasov-Maxwell System and Their Stability”, Acta Applicandae Mathematica, 28:3 (1992), 253–293 | DOI | MR | Zbl
[2] Sidorov N. A., Sinitsyn A. V., “Stationary Vlasov–Maxwell System in Bounded Areas”, Nonlinear Analysis and Nonlinear Differential Equations, Fizmatlit, M., 2003, 50–88 (in Russian) | MR | Zbl
[3] N. Sidorov, D. Sidorov, A. Sinitsyn, Toward General Theory of Differential Operator and Kinetic Models, World Scientific, Singapore, 2020 | DOI | MR | Zbl
[4] Zhuravlev V. M., “Diffusive Toda Chains in Models of Nonlinear Waves in Active Media”, Journal of Experimental and Theoretical Physics, 87:5 (1998), 1031–1039 | DOI
[5] Zhuravlev V. M., “On One Class of Models of Autowaves in Active Media with Diffusion, Admitting Exact Solutions”, Journal of Experimental and Theoretical Physics Letters, 65:3 (1996), 300–304 | DOI
[6] A.D. Polyanin, A.M. Kutepov, A.V. Vyazmin, D.A. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor $\$ Francis, London–N.Y., 2002
[7] Kapcov O. V., Integration Methods for Partial Differential Equations, Fizmatlit, M., 2009 (in Russian)
[8] Shmidt A. V., “Exact Solutions of Systems of Equations of the Reaction-Diffusion Type”, Vychislitel'nye tekhnologii, 3:4 (1998), 87–94 (in Russian) | MR
[9] Cherniha R., King J. R., “Non-Linear Reaction-Diffusion Systems with Variable Diffusivities: Lie Symmetries, Ansatze and Exact Solutions”, Journal of Mathematical Analysis and Applications, 308 (2005), 11–35 | DOI | MR | Zbl
[10] Kosov A. A., Semenov E. I., “On Exact Multidimensional Solutions of a Nonlinear System of Reaction-Diffusion Equations”, Differential Equations, 54:1 (2018), 106–120 | DOI | MR | Zbl
[11] Polyanin A. D., Zaitsev V. F., Handbook of Nonlinear Partial Differential Equations, Second Edition, Updated, Revised and Extended, Chapman $\ $ Hall/CRC Press, Boca Raton–London–N.Y., 2012 | MR
[12] Polyanin A. D., Zaitsev V. F., Nonlinear Equations of Mathematical Physics, v. 1, Fizmatlit, M., 2017 (in Russian)
[13] Polyanin A. D., Zaitsev V. F., Nonlinear Equations of Mathematical Physics, v. 2, Fizmatlit, M., 2017 (in Russian)
[14] Gantmaxer F. R., Matrix Theory, Nauka, M., 1988 (in Russian) | MR