Anisotropic solutions of a nonlinear kinetic model of elliptic type
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 48-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear kinetic model described by a system of two equations in partial derivatives of the elliptic type with exponential nonlinearities. We propose to construct exact solutions of the mathematical model in the class of logarithms from quadratic functions of spatial variables. The solution coefficients of the model are found from systems of square matrix and linear vector equations. In particular, the proposed approach is used to construct anisotropic solutions to the Liouville equation, often used as a mathematical model of stationary distributions in plasma physics. We illustrate the results by a number of examples.
Keywords: kinetic model, nonlinear elliptic system
Mots-clés : Liouville equation, matrix equations, exact solutions.
@article{VYURU_2020_13_4_a3,
     author = {A. A. Kosov and E. I. Semenov},
     title = {Anisotropic solutions of a nonlinear kinetic model of elliptic type},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {48--57},
     year = {2020},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
TI  - Anisotropic solutions of a nonlinear kinetic model of elliptic type
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 48
EP  - 57
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/
LA  - ru
ID  - VYURU_2020_13_4_a3
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%T Anisotropic solutions of a nonlinear kinetic model of elliptic type
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 48-57
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/
%G ru
%F VYURU_2020_13_4_a3
A. A. Kosov; E. I. Semenov. Anisotropic solutions of a nonlinear kinetic model of elliptic type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a3/

[1] Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn, D. Tolstonogov, “Steady State Solutions of the Vlasov-Maxwell System and Their Stability”, Acta Applicandae Mathematica, 28:3 (1992), 253–293 | DOI | MR | Zbl

[2] Sidorov N. A., Sinitsyn A. V., “Stationary Vlasov–Maxwell System in Bounded Areas”, Nonlinear Analysis and Nonlinear Differential Equations, Fizmatlit, M., 2003, 50–88 (in Russian) | MR | Zbl

[3] N. Sidorov, D. Sidorov, A. Sinitsyn, Toward General Theory of Differential Operator and Kinetic Models, World Scientific, Singapore, 2020 | DOI | MR | Zbl

[4] Zhuravlev V. M., “Diffusive Toda Chains in Models of Nonlinear Waves in Active Media”, Journal of Experimental and Theoretical Physics, 87:5 (1998), 1031–1039 | DOI

[5] Zhuravlev V. M., “On One Class of Models of Autowaves in Active Media with Diffusion, Admitting Exact Solutions”, Journal of Experimental and Theoretical Physics Letters, 65:3 (1996), 300–304 | DOI

[6] A.D. Polyanin, A.M. Kutepov, A.V. Vyazmin, D.A. Kazenin, Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor $\$ Francis, London–N.Y., 2002

[7] Kapcov O. V., Integration Methods for Partial Differential Equations, Fizmatlit, M., 2009 (in Russian)

[8] Shmidt A. V., “Exact Solutions of Systems of Equations of the Reaction-Diffusion Type”, Vychislitel'nye tekhnologii, 3:4 (1998), 87–94 (in Russian) | MR

[9] Cherniha R., King J. R., “Non-Linear Reaction-Diffusion Systems with Variable Diffusivities: Lie Symmetries, Ansatze and Exact Solutions”, Journal of Mathematical Analysis and Applications, 308 (2005), 11–35 | DOI | MR | Zbl

[10] Kosov A. A., Semenov E. I., “On Exact Multidimensional Solutions of a Nonlinear System of Reaction-Diffusion Equations”, Differential Equations, 54:1 (2018), 106–120 | DOI | MR | Zbl

[11] Polyanin A. D., Zaitsev V. F., Handbook of Nonlinear Partial Differential Equations, Second Edition, Updated, Revised and Extended, Chapman $\ $ Hall/CRC Press, Boca Raton–London–N.Y., 2012 | MR

[12] Polyanin A. D., Zaitsev V. F., Nonlinear Equations of Mathematical Physics, v. 1, Fizmatlit, M., 2017 (in Russian)

[13] Polyanin A. D., Zaitsev V. F., Nonlinear Equations of Mathematical Physics, v. 2, Fizmatlit, M., 2017 (in Russian)

[14] Gantmaxer F. R., Matrix Theory, Nauka, M., 1988 (in Russian) | MR