Exact solutions of the nonlinear heat conduction model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 33-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues a large series of our publications devoted to solutions of the nonlinear heat conduction equation. The solutions are heat waves that propagate over a zero background with a finite velocity. We study the problem on constructing exact solutions of the considered type for the nonlinear heat conduction equation with a source (sink) and determining their properties. A feature of such solutions is that the parabolic type of the equation is degenerate at the front of a heat wave, therefore, properties unusual for parabolic equations appear. We consider two types of solutions. The first one is a simple wave that moves at a constant speed and has the form of a solitary wave (soliton). The second one is a heat wave with an exponential law of front motion. In both cases, the construction is reduced to Cauchy problems for second-order ordinary differential equations (ODEs), which inherit the singularity from the original problem. We construct phase portraits of ODEs and establish the properties of trajectories passing through singular points. Also, we obtain the power series expansions of the required solutions and estimate their convergence radii.
Keywords: nonlinear heat conduction equation, heat wave, series.
Mots-clés : exact solution, phase portrait
@article{VYURU_2020_13_4_a2,
     author = {A. L. Kazakov and P. A. Kuznetsov},
     title = {Exact solutions of the nonlinear heat conduction model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {33--47},
     year = {2020},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a2/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - P. A. Kuznetsov
TI  - Exact solutions of the nonlinear heat conduction model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 33
EP  - 47
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a2/
LA  - ru
ID  - VYURU_2020_13_4_a2
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A P. A. Kuznetsov
%T Exact solutions of the nonlinear heat conduction model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 33-47
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a2/
%G ru
%F VYURU_2020_13_4_a2
A. L. Kazakov; P. A. Kuznetsov. Exact solutions of the nonlinear heat conduction model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 33-47. http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a2/