Numerical study of the susuplume air pollution model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we propose a SUSUPLUME air pollution as a modern application of the classical Gaussian plume model. The presented model takes into account meteorological conditions and parameters of the pollution sources. The classical model is supplemented by the equations of motion of the center of mass of a single emission. A numerical study has shown that in stationary weather conditions the presented model qualitatively coincides with other known models. The results of calculating the concentrations of pollutants do not contradict the obtained values based on the official methodology for calculating the maximum concentrations of pollutants approved for usege in the territory of the Russian Federation. The SUSUPLUME model contains a number of identifiable parameters and it can be adapted to real conditions. The computational model consists of two blocks: a block for recording measurement information and a block for calculating the concentrations of pollutants. The measurement information registration unit has a low labor intensity (over a million registrations per second). The pollutant concentrations calculation block is laborious (400 points of calculations per second). Concentrations are calculated independently, it allows to use parallelization of the computational process in the future.
Keywords: air pollution model, Gaussian plume model, Romberg's method.
@article{VYURU_2020_13_4_a0,
     author = {S. M. Elsakov and D. A. Drozin and A. V. Herreinstein and T. G. Krupnova and S. G. Nitskaya and T. Yu. Olenchikova and A. A. Zamyshlyaeva},
     title = {Numerical study of the susuplume air pollution model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--18},
     year = {2020},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a0/}
}
TY  - JOUR
AU  - S. M. Elsakov
AU  - D. A. Drozin
AU  - A. V. Herreinstein
AU  - T. G. Krupnova
AU  - S. G. Nitskaya
AU  - T. Yu. Olenchikova
AU  - A. A. Zamyshlyaeva
TI  - Numerical study of the susuplume air pollution model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 5
EP  - 18
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a0/
LA  - en
ID  - VYURU_2020_13_4_a0
ER  - 
%0 Journal Article
%A S. M. Elsakov
%A D. A. Drozin
%A A. V. Herreinstein
%A T. G. Krupnova
%A S. G. Nitskaya
%A T. Yu. Olenchikova
%A A. A. Zamyshlyaeva
%T Numerical study of the susuplume air pollution model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 5-18
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a0/
%G en
%F VYURU_2020_13_4_a0
S. M. Elsakov; D. A. Drozin; A. V. Herreinstein; T. G. Krupnova; S. G. Nitskaya; T. Yu. Olenchikova; A. A. Zamyshlyaeva. Numerical study of the susuplume air pollution model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 4, pp. 5-18. http://geodesic.mathdoc.fr/item/VYURU_2020_13_4_a0/

[1] Krupnova T. G., Rakova O. V., Plaksina A. L., Gavrilkina S. V., Baranov E. O., Abramyan A. D., “Short Communication: Effect of Urban Greening and Land Use on Air Pollution in Chelyabinsk, Russia”, Biodiversitas, 21:6 (2020), 2716–2720 | DOI

[2] On the Approval of Methods for Calculating the Dispersion of Emissions of Harmful (Polluting) Substances in the Air, Rostekhnadzor, M., 2017 (in Russian)

[3] Tao Z., Santanello J. A., Chin M., Zhou S., Tan Q., Kemp E. M., Peters-Lidard C. D., “Effect of Land Cover on Atmospheric Processes and Air Quality Over the Continental United States – A NASA Unified WRF (NU-WRF) Model Study”, Atmospheric Chemistry and Physics, 13 (2013), 6207–6226 | DOI

[4] Kai Wang, Yang Zhang, Khairunnisa Yahya, Shiang-Yuh Wu, Grell G., “Implementation and Initial Application of a New Chemistry-Aerosol Option in WRF/Chem for Simulation of Secondary Organic Aerosols and Aerosol Indirect Effects”, Atmospheric Environment, 115 (2015), 716–732 | DOI

[5] Khairunnisa Yahya, Glotfelty T., Kai Wang, Yang Zhang, Nenes A., “Modeling Regional Air Quality and Climate: Improving Organic Aerosol and Aerosol Activation Processes in WRF/Chem Version 3.7.1”, Geoscientific Model Development, 10 (2017), 2333–2363 | DOI

[6] Jian He, Ruoying He, Yang Zhang, “Impacts of Air-Sea Interactions on Regional Air Quality Predictions Using a Coupled Atmosphere-Ocean Model in Southeastern U. S”, Aerosol and Air Quality Research, 18 (2018), 1044–1067 | DOI

[7] Solazzo E., Vardoulakis S., Cai X., “A Novel Methodology for Interpreting Air Quality Measurements from Urban Streets Using CFD Modelling”, Atmospheric Environment, 45 (2011), 5230–5239 | DOI

[8] Gmez-Losada A., Santos F. M., Gibert K., Pires J. C. M., “A Data Science Approach for Spatiotemporal Modelling of Low and Resident Air Pollution in Madrid (Spain): Implications for Epidemiological Studies”, Computers, Environment and Urban Systems, 75 (2019), 1–11 | DOI

[9] Sanchez B., Santiago J. L., Martilli A., Martin F., Borge R., Quaassdorff C., De La Paz D., “Modelling NOX Concentrations Through CFD-RANS in an Urban Hotspot Using High Resolution Traffic Emissionsa and Meteorology from a Mesoscale Model”, Atmospheric Environment, 163 (2017), 155–165 | DOI

[10] Kamenetsky E. S., Radionoff A. A., “Aerodynamics of Mountain Valleys with Varying Cross Sections”, Boundary-Layer Meteorology, 91:2 (1999), 191–197 | DOI

[11] Methodology for Calculating the Concentration of Harmful Substances in the Atmospheric Air Contained in the Emissions of Enterprises (OND-86), Gidrometeoizdat, L., 1987 (in Russian)

[12] Genikhovich E. L., The Main Directions of the Revision of the Normative Document OND-86 on the Calculation of Dispersion of Pollutant Emissions in the Atmosphere, NPK “Atmosphere”, Saint-Petersburg, 2002 (in Russian)

[13] Hurley P. J., Physick W. L., Luhar A. K., “TAPM: A Practical Approach to Prognostic Meteorological and Air Pollution Modelling”, Environmental Modelling and Software, 20:6 (2005), 737–752 | DOI

[14] Hurley P., TAPM V4. User Manual, CSIRO Marine and Atmospheric Research Internal Report, No 5, 2008, 35 pp.

[15] Gifford F. A., “Turbulent Diffusion Typing Schemes: a Review”, Nuclear Safety, 17:1 (1976), 68–86

[16] Atmospheric Dispersion Models for Application in Relation to Radionuclide Release, Technical Publications, No 379, International Atomic Energy Agency, 1986, 138 pp.

[17] Bespalov M. S., “Modelling the Spread of Contaminants in the Atmosphere as a Tool for Air Protection Activities”, Problems of Ecological Monitoring And Modeling of Ecosystems, 27:1 (2016), 74–85 (in Russian) | MR

[18] Byzova N. L., Garger E. K., Ivanov V. N., Experimental Studies of Atmospheric Diffusion and Calculations of Impurity Scattering, Gidrometeoizdat, L., 1991 (in Russian)

[19] Byzova N. L., Ivanov V. N., Garger E. K., Turbulence in the Atmospheric Boundary Layer, Goskomgidromet, L., 1989 (in Russian)

[20] The AMS/EPA Regulatory Model – AERMOD, EPA-454/B-03-001, U.S. Environmental Protection Agency, 2004

[21] Scire J. S., Strimaitis D. G., Yamartino R. J., Model Formulation and User's Guide for the CALPUFF Dispersion Model, California Air Resources Board, 1990

[22] Brykin S. N., Markovsky V. V., Serebryakov I. S., Methodology for the Development of Standards for Maximum Permissible Emissions of Radioactive Substances into the Atmospheric Air, v. 2, 2010 (in Russian)

[23] Berlyand M. E., Forecast and Regulation of Atmospheric Pollution, Gidrometeoizdat, L., 1985 (in Russian)

[24] Scire J., Lurmann F., Bass A., Hanna S., User's Guide to the MESOPUFF II Model and Related Processor Programs, EPA/600/8-84/013 (NTIS PB84181775), U.S. Environmental Protection Agency, Washington, 1984

[25] Romberg W., “Vereinfachte numerische integration”, Det kongelige norske videnskabers selskab forhandlinger, Trondheim, 28:7 (1955), 30–36 (in German) | MR | Zbl