Model of Bernoulli memristors in the form of split signals polynomial
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 86-92
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the behavioral model of a memristor, in which the current dynamics is described by the differential Bernoulli equation, is represented. as a polynomial of split signals. On exciting by a harmonic signal, the behavioral model is built as the two-dimensional polynomial of split signals for a transfer characteristic of the Bernoulli memristor. The splitting of the input signals provides the uniqueness of the input-output mapping, the model adaptation to the specified class of the input signals and, therefore, the model simplicity compared to general nonlinear models, for example, the Volterra series and neural networks. The harmonic input signal is splitted by means of the delay line. It is shown that the vector signal containing the input signal and its delay in time by one step is split and has the smallest possible length according to the splitting conditions. The two-dimensional polynomial of the third power, built on the elements of the vector signal, provides high precision modeling of the transfer characteristic of the Bernoulli memristor in the mean-squared norm.
Keywords: memristor, nonlinear dynamic system, behavioral model
Mots-clés : multidimensional polynomial.
@article{VYURU_2020_13_3_a8,
     author = {E. B. Solovyeva and H. A. Harchuk},
     title = {Model of {Bernoulli} memristors in the form of split signals polynomial},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {86--92},
     year = {2020},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a8/}
}
TY  - JOUR
AU  - E. B. Solovyeva
AU  - H. A. Harchuk
TI  - Model of Bernoulli memristors in the form of split signals polynomial
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 86
EP  - 92
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a8/
LA  - ru
ID  - VYURU_2020_13_3_a8
ER  - 
%0 Journal Article
%A E. B. Solovyeva
%A H. A. Harchuk
%T Model of Bernoulli memristors in the form of split signals polynomial
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 86-92
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a8/
%G ru
%F VYURU_2020_13_3_a8
E. B. Solovyeva; H. A. Harchuk. Model of Bernoulli memristors in the form of split signals polynomial. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 86-92. http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a8/

[1] H. Abunahla, B. Mohammad, Memristor Technology: Synthesis and Modeling for Sensing and Security Applications, Springer, Cham, 2018

[2] I. Vourkas, G.Ch. Sirkoulis, Memristor-Based Nanoelectronic Computing Circuits and Architectures, Springer, Cham, 2016

[3] A.G. Radwan, M.E. Fouda, On the Mathematical Modeling of Memristor, Memcapacitor and Meminductor, Springer, Cham, 2015 | MR | Zbl

[4] E.B. Solovyeva, “Operator Approach to Nonlinear Compensator Synthesis for Communication Systems”, International Siberian Conference on Control and Communications (SIBCON) (Moscow, 2016), 1–5 | DOI

[5] E.B. Solovyeva, “A Split Signal Polynomial as a Model of an Impulse Noise Filter for Speech Signal Recovery”, International Conference on Information Technologies in Business and Industry, Journal of Physics: Conference Series, 803, no. 1, 2017, 1–6 | DOI

[6] Z. Biolek, D. Biolek, V. Biolkova, “Differential Equations of Ideal Memristors”, Radioengineering, 24:2 (2015), 369–377 | DOI

[7] Chao Ma, Shuguo Xie, Yunfeng Jia, Guanyu Lin, “Macromodeling of the Memristor Using Piecewise Volterra Series”, Microelectronics Journal, 45:3 (2014), 325–329 | DOI

[8] P.S. Georgiou, M. Barahona, S.N. Yaliraki, E.M. Drakakis, “Device Properties of Bernoulli Memristors”, Proceedings of the IEEE, 100:6 (2012), 1938–1950 | DOI