Forecasting tariffs for the day-ahead market based on the additive model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 73-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of constructing an additive model for forecasting of the market tariff for the day ahead is solved. The trend component is constructed on the basis of the autoregressive model of already known values of the day-ahead market tariff and the external factor of electricity consumption according to the United Energy System (UES) of the Urals Wholesale Electricity and Power Market (OREM) of Russia for 2009–2018. Based on the construction of the autocorrelation function, three seasonal components are identified in the time series of hourly values of the market tariff for the day ahead: annual (8760 values), weekly (168 values), daily (24 values). A harmonic model of each component is constructed. The final additive model is constructed taking into account the specifics of the electricity market and the process of setting the market tariff for the day ahead and a balancing market. The practical significance of the developed additive model is adequate accuracy with the well-known models for forecasting of the market tariff for the day ahead of the UES of the Urals. The proposed model allows the subjects of the electric power industry to avoid penalties from the balancing market by ensuring high accuracy of forecasting.
Keywords: modelling, forecasting, additive model, electric power industry, energy market.
Mots-clés : autoregression
@article{VYURU_2020_13_3_a6,
     author = {E. A. Lyaskovskaya and P. K. Zarjitskaya-Thierling and O. A. Dmitrina},
     title = {Forecasting tariffs for the day-ahead market based on the additive model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {73--79},
     year = {2020},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a6/}
}
TY  - JOUR
AU  - E. A. Lyaskovskaya
AU  - P. K. Zarjitskaya-Thierling
AU  - O. A. Dmitrina
TI  - Forecasting tariffs for the day-ahead market based on the additive model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 73
EP  - 79
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a6/
LA  - en
ID  - VYURU_2020_13_3_a6
ER  - 
%0 Journal Article
%A E. A. Lyaskovskaya
%A P. K. Zarjitskaya-Thierling
%A O. A. Dmitrina
%T Forecasting tariffs for the day-ahead market based on the additive model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 73-79
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a6/
%G en
%F VYURU_2020_13_3_a6
E. A. Lyaskovskaya; P. K. Zarjitskaya-Thierling; O. A. Dmitrina. Forecasting tariffs for the day-ahead market based on the additive model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 73-79. http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a6/

[1] Garcia R. C., “Forecasting Model to Predict Day-Ahead Electricity Prices”, IEEE Transactions on Power Systems, 20:2 (2005), 867–874 | DOI

[2] Mokhov V. G., Demyanenko T. S., “The Construction of the Trend Component of the Additive Model of Long-Term Forecasting of the Wholesale Market of Electric Energy and Power of Russia Using the Example of the Ural Energy System”, Bulletin of the South Ural State University. Series: Economics and Management, 12:2 (2018), 80–87 | DOI

[3] Taylor J. W., McSharry P. E., “Short-Term Load Forecasting Methods: an Evaluation Based on European Data”, IEEE Transactions on Power Systems, 22 (2008), 2213–2219 | DOI

[4] Taylor J. W., “Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing”, Journal of Operational Research Society, 54 (2003), 799–805 | DOI | Zbl

[5] Perez M., Time Series Analysis with Matlab. ARIMA and ARIMAX Models, Create Space Independent Publishing Platform, Scotts Valley, 2016