Convergence modelling in international integration associations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 68-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers mathematical tools for modelling economic policy as a whole, as well as convergence in the field of labor, foreign economic activity, monetary and debt policy. Convergence was estimated using the $\sigma$-convergence model, which characterizes the decrease in time spread in the levels of development of countries and regions, reflecting the negative relationship between economic growth rates and the initial level of development of countries and regions. The $\sigma$-convergence was estimated by the coefficient of variation and by the dispersion-based model. To assess $\beta$-convergence, we used the Barro and Sala-i-Martin models, as well as the Baumol, Solow–Svan, and Quadrado–Rour models. The use of this mathematical toolkit allows to explore the presence and speed of convergence before and after joining international integration associations. The proposed mathematical modelling tools are recommended to be used in order to analyze convergence processes, study the dynamics of convergence or divergence, and also to adjust the directions and methods of state and regional economic policies of countries included in the integration association.
Keywords: modelling, integration, economic policy, country, region, effect
Mots-clés : $\sigma$-convergence, $\beta$-convergence.
@article{VYURU_2020_13_3_a5,
     author = {V. V. Krivorotov and E. S. Fediai and O. Yu. Ivanova and O. Yu. Polyakova},
     title = {Convergence modelling in international integration associations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {68--72},
     year = {2020},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a5/}
}
TY  - JOUR
AU  - V. V. Krivorotov
AU  - E. S. Fediai
AU  - O. Yu. Ivanova
AU  - O. Yu. Polyakova
TI  - Convergence modelling in international integration associations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 68
EP  - 72
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a5/
LA  - en
ID  - VYURU_2020_13_3_a5
ER  - 
%0 Journal Article
%A V. V. Krivorotov
%A E. S. Fediai
%A O. Yu. Ivanova
%A O. Yu. Polyakova
%T Convergence modelling in international integration associations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 68-72
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a5/
%G en
%F VYURU_2020_13_3_a5
V. V. Krivorotov; E. S. Fediai; O. Yu. Ivanova; O. Yu. Polyakova. Convergence modelling in international integration associations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 68-72. http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a5/

[1] Young A., Higgins M., Levy D., “Sigma Convergence Versus Beta Convergence: Evidence from U. S. County-Level Data”, Journal of Money, Credit and Banking, 40:5 (2008), 1083–1093 | DOI

[2] Michelis N.De., Regional Convergence: a Relevant Measure of Policy Success?, CESifo Forum, 2008, no. 1, 10–13

[3] Kolomak E. A., “Models of Regional Policy: Convergence or Divergence”, Bulletin of NSU. Series: Socio-Economic Sciences, 9:1 (2009), 113–120 (in Russian)

[4] Kizima M. A., Klebanova T. S., Unevenness and Cyclical Dynamics of Socio-Economic Development of Regions: Assessment, Analysis, Forecasting, ENGEC, Kharkov, 2012 (in Russian)

[5] Krivorotov V. V., Mokhov V. G., Ivanova O.Yu., Polyakova O.Yu., “Research of the Efects of Convergence of Economic Policy in Regional and Interregional Integration Associations”, Journal of Computational and Engineering Mathematics, 7:2 (2020), 15–30 | DOI