@article{VYURU_2020_13_3_a0,
author = {A. Restuccia and A. Sotomayor and V. A. Shtraus},
title = {On a model of spontaneous symmetry breaking in quantum mechanics},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--16},
year = {2020},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/}
}
TY - JOUR AU - A. Restuccia AU - A. Sotomayor AU - V. A. Shtraus TI - On a model of spontaneous symmetry breaking in quantum mechanics JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2020 SP - 5 EP - 16 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/ LA - en ID - VYURU_2020_13_3_a0 ER -
%0 Journal Article %A A. Restuccia %A A. Sotomayor %A V. A. Shtraus %T On a model of spontaneous symmetry breaking in quantum mechanics %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2020 %P 5-16 %V 13 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/ %G en %F VYURU_2020_13_3_a0
A. Restuccia; A. Sotomayor; V. A. Shtraus. On a model of spontaneous symmetry breaking in quantum mechanics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 5-16. http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/
[1] Weinberg S., Lectures on Quantum Mechanics, Cambrigde University Press, Cambrigde, 2012 | MR
[2] Zurek W. H., “Decoherence, Einselection, and the Quantum Origins of the Classical”, Reviews of Modern Physics, 75 (2003), 715–776 | DOI | MR
[3] Burrau O., “Berechnung des Energiewertes des Wasserstoffmolekel-Ions $(H^2_+)$ im Normalzustand”, Naturwissenschaften, 15:1 (1927), 16–17 (in German) | DOI
[4] Yang C. N., “Some Exact Results for the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction”, Physical Review Letters, 19:23 (1967), 1312–1315 | DOI | MR | Zbl
[5] Kronig R. L., Penney W. G., “Quantum Mechanics of Electrons in Crystal Lattices”, Mathematical, Physical and Engineering Sciences, 130:8 (1931), 499–513 | DOI
[6] Frost A. A., “Delta-Function Model.I.Electronic Energies of Hydrogen-Like Atoms and Diatomic Molecules”, The Journal of Chemical Physics, 25 (1956), 1150–1154 | DOI
[7] Frost A. A., Leland F. E., “Delta-Function Model. Aromatic Hydrocarbons”, The Journal of Chemical Physics, 25 (1956), 1154–1160 | DOI
[8] Claverie P., “Study of the Convergence Radius of the Rayleigh–Schrodinger Perturbation Series for the Delta-Function Model of $H_2^+$”, International Journal of Quantum Chemistry, 3:3 (1969), 349–370 | DOI
[9] Certain P. R., Brown W., “Branch Point Singularities in the Energy of the Delta-Function Model of One-Electron Diatoms”, International Journal of Quantum Chemistry, 6:1 (1972), 131–142 | DOI
[10] Albeverio S., Gesztesy F., Hoegh-Krohn R., Kirsch W., “On Point Interactions in One Dimension”, Operator Theory, 12:1 (1984), 101–126 | MR | Zbl
[11] Gesztesy F., Holden H., “A New Class of Solvable Models in Quantum Mechanics Describing Point Interactions on the Line”, Journal of Physics: Mathematical and General, 20:15 (1987), 5157–5177 | DOI | MR | Zbl
[12] Albeverio S., Gesztesy F., Hoegh-Kron R., Holden H., Solvable Models in Quantum Mechanics, American Mathematical Society, Rhode Island, 2004 | MR
[13] Kurasov P., Luger A., “Reflectionless Potentials and Point Interactions in Pontryagin Spaces”, Letters in Mathematical Physics, 73 (2005), 109–122 | DOI | MR | Zbl
[14] Restuccia A., Sotomayor A., Strauss V., “Non-Local Interactions in Quantum Mechanics Modelled by Shifted Dirac Delta Functions” (Santiago, Chile), Journal of Physics: Conference Series, 1043 (2016), 012013, 9 pp. | DOI