On a model of spontaneous symmetry breaking in quantum mechanics
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our goal is to find a model for the phenomenon of spontaneous symmetry breaking arising in one dimensional quantum mechanical problems. For this purpose we consider boundary value problems related with two interior points of the real line, symmetric with respect to the origin. This approach can be treated as a presence of singular potentials containing shifted Dirac delta functions and their derivatives. From mathematical point of view we use a technique of selfadjoint extensions applied to a symmetric differential operator which has a domain containing smooth functions vanishing in two mentioned above points. We calculate the resolvent of corresponding extension and investigate its behavior if the interior points change their positions. The domain of these extensions can contain some functions that have non differentiability or discontinuity at the points mentioned above, the latter can be interpreted as an appearance of singular potentials centered at the same points. Next, broken-symmetry bound states are discovered. More precisely, for a particular entanglement of boundary conditions, there is a ground state, generating a spontaneous symmetry breaking, stable under the phenomenon of decoherence provoked from external fluctuations. We discuss the model in the context of the “chiral” broken-symmetry states of molecules like $NH_3$. We show that within a Hilbert space approach a spontaneous symmetry breaking disappears if the distance between the mentioned above interior points tends to zero.
Keywords: operator theory, resolvent, solution of wave equation, bound states, spontaneous and radiative symmetry breaking.
@article{VYURU_2020_13_3_a0,
     author = {A. Restuccia and A. Sotomayor and V. A. Shtraus},
     title = {On a model of spontaneous symmetry breaking in quantum mechanics},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--16},
     year = {2020},
     volume = {13},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/}
}
TY  - JOUR
AU  - A. Restuccia
AU  - A. Sotomayor
AU  - V. A. Shtraus
TI  - On a model of spontaneous symmetry breaking in quantum mechanics
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 5
EP  - 16
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/
LA  - en
ID  - VYURU_2020_13_3_a0
ER  - 
%0 Journal Article
%A A. Restuccia
%A A. Sotomayor
%A V. A. Shtraus
%T On a model of spontaneous symmetry breaking in quantum mechanics
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 5-16
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/
%G en
%F VYURU_2020_13_3_a0
A. Restuccia; A. Sotomayor; V. A. Shtraus. On a model of spontaneous symmetry breaking in quantum mechanics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 3, pp. 5-16. http://geodesic.mathdoc.fr/item/VYURU_2020_13_3_a0/

[1] Weinberg S., Lectures on Quantum Mechanics, Cambrigde University Press, Cambrigde, 2012 | MR

[2] Zurek W. H., “Decoherence, Einselection, and the Quantum Origins of the Classical”, Reviews of Modern Physics, 75 (2003), 715–776 | DOI | MR

[3] Burrau O., “Berechnung des Energiewertes des Wasserstoffmolekel-Ions $(H^2_+)$ im Normalzustand”, Naturwissenschaften, 15:1 (1927), 16–17 (in German) | DOI

[4] Yang C. N., “Some Exact Results for the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction”, Physical Review Letters, 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[5] Kronig R. L., Penney W. G., “Quantum Mechanics of Electrons in Crystal Lattices”, Mathematical, Physical and Engineering Sciences, 130:8 (1931), 499–513 | DOI

[6] Frost A. A., “Delta-Function Model.I.Electronic Energies of Hydrogen-Like Atoms and Diatomic Molecules”, The Journal of Chemical Physics, 25 (1956), 1150–1154 | DOI

[7] Frost A. A., Leland F. E., “Delta-Function Model. Aromatic Hydrocarbons”, The Journal of Chemical Physics, 25 (1956), 1154–1160 | DOI

[8] Claverie P., “Study of the Convergence Radius of the Rayleigh–Schrodinger Perturbation Series for the Delta-Function Model of $H_2^+$”, International Journal of Quantum Chemistry, 3:3 (1969), 349–370 | DOI

[9] Certain P. R., Brown W., “Branch Point Singularities in the Energy of the Delta-Function Model of One-Electron Diatoms”, International Journal of Quantum Chemistry, 6:1 (1972), 131–142 | DOI

[10] Albeverio S., Gesztesy F., Hoegh-Krohn R., Kirsch W., “On Point Interactions in One Dimension”, Operator Theory, 12:1 (1984), 101–126 | MR | Zbl

[11] Gesztesy F., Holden H., “A New Class of Solvable Models in Quantum Mechanics Describing Point Interactions on the Line”, Journal of Physics: Mathematical and General, 20:15 (1987), 5157–5177 | DOI | MR | Zbl

[12] Albeverio S., Gesztesy F., Hoegh-Kron R., Holden H., Solvable Models in Quantum Mechanics, American Mathematical Society, Rhode Island, 2004 | MR

[13] Kurasov P., Luger A., “Reflectionless Potentials and Point Interactions in Pontryagin Spaces”, Letters in Mathematical Physics, 73 (2005), 109–122 | DOI | MR | Zbl

[14] Restuccia A., Sotomayor A., Strauss V., “Non-Local Interactions in Quantum Mechanics Modelled by Shifted Dirac Delta Functions” (Santiago, Chile), Journal of Physics: Conference Series, 1043 (2016), 012013, 9 pp. | DOI