Mots-clés : discrete Radon transformation, fast discrete Radon transformation
@article{VYURU_2020_13_1_a9,
author = {K. V. Soshin and D. P. Nikolaev and S. A. Gladilin and E. I. Ershov},
title = {Acceleration of summation over segments using the fast {Hough} transformation pyramid},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {129--140},
year = {2020},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a9/}
}
TY - JOUR AU - K. V. Soshin AU - D. P. Nikolaev AU - S. A. Gladilin AU - E. I. Ershov TI - Acceleration of summation over segments using the fast Hough transformation pyramid JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2020 SP - 129 EP - 140 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a9/ LA - en ID - VYURU_2020_13_1_a9 ER -
%0 Journal Article %A K. V. Soshin %A D. P. Nikolaev %A S. A. Gladilin %A E. I. Ershov %T Acceleration of summation over segments using the fast Hough transformation pyramid %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2020 %P 129-140 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a9/ %G en %F VYURU_2020_13_1_a9
K. V. Soshin; D. P. Nikolaev; S. A. Gladilin; E. I. Ershov. Acceleration of summation over segments using the fast Hough transformation pyramid. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a9/
[1] Donoho D. L., Xiaoming Huo, Beamlets and Multiscale Image Analysis, Springer, Berlin, 2002 | MR | Zbl
[2] Arias-Castro E., Donoho D. L., Xiaoming Huo, “Near-Optimal Detection of Geometric Objects by Fast Multiscale Methods”, IEEE Transactions on Information Theory, 51:7 (2005), 2402–2425 | DOI | MR | Zbl
[3] Brady M. L., Whanki Yong, “Fast Parallel Discrete Approximation Algorithms for the Radon Transform”, Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, 1992, 91–99 | DOI
[4] Nikolaev D. P., Karpenko S. M., Nikolaev T. P., Nikolaev P. P., “Hough Transform: Underestimated Tool in the Computer Vision Field”, Proceedings of the 22th European Conference on Modelling and Simulation (3–6 June, Nicosia, 2008), 238–243 | DOI
[5] Ershov E. I., Karpenko S. M., Transform and Approximation Properties of Dyadic Patterns, 2017, arXiv: 1712.05615
[6] Khanipov T. M., Computational Complexity Lower Bounds of Certain Discrete Radon Transform Approximations, 2018, arXiv: 1801.01054
[7] Skoryukina N., Shemyakina J., Arlazarov V. L., Faradzhev I., “Document Localization Algorithms Based on Feature Points and Straight Lines”, The Tenth International Conference on Machine Vision (13–16 April, Vienna, 2018), Proc. SPIE, 10696, 106961H
[8] Aliev M., Ershov E. I., Nikolaev D. P., “On the Use of FHT, Its Modification for Practical Applications and the Structure of Hough Image”, Eleventh International Conference on Machine Vision (16–18 November, Amsterdam, 2019), Proc. SPIE, 11041, 1104119 | DOI
[9] Ershov E. I., Terekhin A. P., Nikolaev D. P., “Generalization of the Fast Hough Transform for Three-Dimensional Images”, Journal of Communications Technology and Electronics, 63:6 (2018), 626–636 | DOI
[10] Soshin K. V., Gladilin S. A., Ershov E. I., “About Fast Search Sums Through Segments on the Image With Pre-Calculated Hough-Pyramid”, 43-rd Interdisciplinary School-Conference IITP RAS “Information Technolgies and Systems” (Perm, 2019) (in Russian)
[11] Sheshkus A., Ingacheva A., Nikolaev D., “Vanishing Points Detection Using Combination of Fast Hough Transform and Deep Learning”, Proc. SPIE, 10696, 2018, 106960
[12] Arlazarov V. L., Dinits E. A., Kronrod M. A., Faradzhev I. A., “On Economical Construction of The Transitive Closure of a Directed Graph”, Doklady Academii Nauk, 194:3 (1970), 487–488 (in Russian) | MR | Zbl