Mathematical modelling of the process of homogeneous condensation of a mixture of aluminum oxide and carbon dioxide
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 1, pp. 141-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The flow of saturated vapors of a mixture of aluminum, oxygen and argon in a supersonic nozzle is considered. The reactions of combining suboxides are determined, which constitute the bulk of the alumina clusters formed during condensation. A numerical simulation of a flow in a supersonic nozzle in a one-dimensional formulation was done. The obtained data on the quantitative composition of the formed combustion products, including alumina clusters, also have calculated data on the growth of the radius of critical oxide nuclei and the temperature of the mixture along the length of the nozzle. A significant change in the flow parameters in the nozzle is shown, which is caused by the heat generated during condensation. The results obtained are in qualitative agreement with the known experimental data on the size of particles formed during the homogeneous condensation of aluminum oxide.
Keywords: mathematical modelling, supersonic nozzle, alumina, aluminum suboxides.
Mots-clés : homogenous condensation
@article{VYURU_2020_13_1_a10,
     author = {S. A. Gruzd and M. A. Korepanov and A. A. Chukavina},
     title = {Mathematical modelling of the process of homogeneous condensation of a mixture of aluminum oxide and carbon dioxide},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {141--149},
     year = {2020},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a10/}
}
TY  - JOUR
AU  - S. A. Gruzd
AU  - M. A. Korepanov
AU  - A. A. Chukavina
TI  - Mathematical modelling of the process of homogeneous condensation of a mixture of aluminum oxide and carbon dioxide
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2020
SP  - 141
EP  - 149
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a10/
LA  - ru
ID  - VYURU_2020_13_1_a10
ER  - 
%0 Journal Article
%A S. A. Gruzd
%A M. A. Korepanov
%A A. A. Chukavina
%T Mathematical modelling of the process of homogeneous condensation of a mixture of aluminum oxide and carbon dioxide
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2020
%P 141-149
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a10/
%G ru
%F VYURU_2020_13_1_a10
S. A. Gruzd; M. A. Korepanov; A. A. Chukavina. Mathematical modelling of the process of homogeneous condensation of a mixture of aluminum oxide and carbon dioxide. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 13 (2020) no. 1, pp. 141-149. http://geodesic.mathdoc.fr/item/VYURU_2020_13_1_a10/

[1] Pohil P. F., Belyaev A. F., Frolov Yu.V., Combustion of Powdered Metals in Active Media, Nauka, Kaluga–M., 1972 (in Russian)

[2] Babuk V. A., Budnyi N. L., “Modelling of Smoke Oxide Particles Evolution in Flow of Combustion Products of Aluminized Solid Propellant”, Chemical Physics and Mesoscopics, 19:1 (2017), 5–19 (in Russian)

[3] Malinin V. I., Organization of In-Chamber Processes in Motor and Technological Installations on Metal Combustibles, PhD Thesis, Perm–Izhevsk, 2007 (in Russian)

[4] Beckstead M. W., Liang Y., Pudduppakkam K. V., “Numerical Simulation of Single Aluminum Particle Combustion (Review)”, Combustion, Explosion and Shock Waves, 41:6 (2005), 622–638 | DOI

[5] A.M. Savel'ev, A.M. Starik, “The Formation of (Al2O3)n Clusters as a Probable Mechanism of Aluminum Oxide Nucleation During the Combustion of Aluminized Fuels: Numerical Analysis”, Combustion and Flame, 196 (2018), 223–236 | DOI

[6] Sundaram D. S., Yang V., Zarko V. E., “Combustion of Nano Aluminum Particles”, Combustion, Explosion and Shock Waves, 51:2 (2015), 173–196 | DOI

[7] Anisimov M. P., “Nucleation: Theory and Experiment”, Russian Chemical Reviews, 72:7 (2003), 591–628 | DOI

[8] Gidaspov V.Yu., Pirumov U. G., Ivanov I. E., Models of the Formation of Nanoparticles in Gas Flows: Educational Complex, Eidos, Kaluga–M., 2011 (in Russian)

[9] Korepanov M. A., Gruzd S. A., “Mathematical Modeling of Flow With Homogeneous Condensation”, Chemical Physics and Mesoscopics, 17:1 (2015), 55–63 (in Russian)

[10] Korepanov M. A., Gruzd S. A., “Modeling Homogeneous Condensation Considering the Quasiequilibrium Concentration of Small Agglomerates”, Chemical Physics and Mesoscopics, 16:1 (2014), 63–67

[11] Korepanov M. A., Gruzd S. A., “Mathematical Modeling of Turbulent Flow with Homogeneous Condensation in the Supersonic Nozzle”, Chemical Physics and Mesoscopics, 18:3 (2016), 370–380 (in Russian)

[12] Alemasov V. E., Dergalin A. F., Tishin A. P., The Theory of Rocket Engines, Mashinostroenie, M., 1969 (in Russian)

[13] Gurvich L. V., Vejc I. V., Medvedev V. A., Thermodynamic Properties of Individual Substances. Reference Edition, Nauka, M., 1978 (in Russian)