Numerical research of the mathematical model for traffic flow
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 4, pp. 128-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problems of distribution of transport flows are currently relevant in connection with the increase in vehicles. In the 50s of the last century, the first macroscopic (hydrodynamic) models appeared, where the transport flow resembles the flow  “motivated” compressible liquid. The scientific approach based on the Navier–Stokes system. The main idea of the scholars is consideration the hydrodynamic models on the grounds of interrelation between the transport flow and incompressible fluid. For modelling traffic flows we examine Oskolkov equation on the geometric graph, where the edge has two positive values corresponding to it  “length” and “width”. Certainly, in the context of mathematical model the values $l_{k}$ and $b_{k}$ are dimensionless,  but for clarity it is convenient to imagine that $l_{k}$ is measured in linear metric units, for example, kilometers or miles, and $b_{k}$ is equal to the number of traffic lanes on the roadway in one direction. In terms of the Oskolkov model, we obtained a non-classical multipoint initial-final value condition. We will study such a model using the idea and methods of the Sobolean equation theory.
These notes describe a numerical experiment based on the Galerkin method for the Oskolkov equation with a multipoint initial-final condition on the graph.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Oskolkov equation, geometric graph, multipoint initial-final condition, traffic flows.
                    
                    
                    
                  
                
                
                @article{VYURU_2019_12_4_a10,
     author = {A. S. Konkina},
     title = {Numerical research of the mathematical model for traffic flow},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {128--134},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/}
}
                      
                      
                    TY - JOUR AU - A. S. Konkina TI - Numerical research of the mathematical model for traffic flow JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 128 EP - 134 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/ LA - en ID - VYURU_2019_12_4_a10 ER -
%0 Journal Article %A A. S. Konkina %T Numerical research of the mathematical model for traffic flow %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 128-134 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/ %G en %F VYURU_2019_12_4_a10
A. S. Konkina. Numerical research of the mathematical model for traffic flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 4, pp. 128-134. http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/
