@article{VYURU_2019_12_4_a10,
author = {A. S. Konkina},
title = {Numerical research of the mathematical model for traffic flow},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {128--134},
year = {2019},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/}
}
TY - JOUR AU - A. S. Konkina TI - Numerical research of the mathematical model for traffic flow JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 128 EP - 134 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/ LA - en ID - VYURU_2019_12_4_a10 ER -
%0 Journal Article %A A. S. Konkina %T Numerical research of the mathematical model for traffic flow %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 128-134 %V 12 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/ %G en %F VYURU_2019_12_4_a10
A. S. Konkina. Numerical research of the mathematical model for traffic flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 4, pp. 128-134. http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/
[1] Hwang F. K., Richards D., Winter P., The Steiner Tree Problem, Elsevier Science Publishers, Amsterdam, 1992
[2] Siebel F., Mauser W., “On the Fundamental Diagram of Traffic Flow”, SIAM Journal on Applied Mathematics, 66 (2006), 1150–1162 | DOI | MR | Zbl
[3] Kurzhanski A. A., Kurzhanski A. B., “Smart City Crossroads”, Computer Research and Modeling, 10:3 (2015), 347–358 (in Russian) | DOI
[4] Zgonnikov A., Lubashevsky I., “Double-Well Dynamics of Noise-Driven Control Activation in Human Intermittent Control: The Case of Stick Balancing”, Cognitive Processing, 16:4 (2015), 351–358 | DOI
[5] Gorodokin V., Almetova Z., Shepelev V., “Algorithm of Signalized Crossroads Passage Within the Range of Permissive-to-Restrictive Signals Exchange”, Transportation Research Procedia, 36 (2018), 225–230 | DOI
[6] Banasiak J., Falkiewicz A., Namayanya P., “Asymptotic State Lumping in Transport and Diffusion Problems on Networks with Applications to Population Problems”, Mathematical Models and Methods in Applied Sciences, 26:2 (2016), 215–247 | DOI | MR | Zbl
[7] Oskolkov A. P., “Nonlocal Problems for Some Class Nonlinear Operator Equations Arising in the Theory Sobolev Type Equations”, Zapiski LOMI, 198, 1991, 31–48 (in Russian) | Zbl
[8] Sviridyuk G. A., Zagrebina S. A., Konkina A. S., “The Oskolkov Equations on the Geometric Graphs as a Mathematical Model of the Traffic Flow”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 148–154 | DOI | Zbl
[9] Oskolkov A. P., “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, Zapiski LOMI, 59, 1976, 133–177 (in Russian) | Zbl
[10] Zagrebina S. A., Konkina A. S., “The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:1 (2015), 132–136 | DOI | Zbl
[11] Bayazitova A. A., “On the Generalized Boundary-Value Problem for Linear Sobolev Type Equations on the Geometric Graph”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 10:3 (2018), 5–11 | Zbl