Numerical research of the mathematical model for traffic flow
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 4, pp. 128-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problems of distribution of transport flows are currently relevant in connection with the increase in vehicles. In the 50s of the last century, the first macroscopic (hydrodynamic) models appeared, where the transport flow resembles the flow “motivated” compressible liquid. The scientific approach based on the Navier–Stokes system. The main idea of the scholars is consideration the hydrodynamic models on the grounds of interrelation between the transport flow and incompressible fluid. For modelling traffic flows we examine Oskolkov equation on the geometric graph, where the edge has two positive values corresponding to it “length” and “width”. Certainly, in the context of mathematical model the values $l_{k}$ and $b_{k}$ are dimensionless, but for clarity it is convenient to imagine that $l_{k}$ is measured in linear metric units, for example, kilometers or miles, and $b_{k}$ is equal to the number of traffic lanes on the roadway in one direction. In terms of the Oskolkov model, we obtained a non-classical multipoint initial-final value condition. We will study such a model using the idea and methods of the Sobolean equation theory. These notes describe a numerical experiment based on the Galerkin method for the Oskolkov equation with a multipoint initial-final condition on the graph.
Keywords: Oskolkov equation, geometric graph, multipoint initial-final condition, traffic flows.
@article{VYURU_2019_12_4_a10,
     author = {A. S. Konkina},
     title = {Numerical research of the mathematical model for traffic flow},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {128--134},
     year = {2019},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/}
}
TY  - JOUR
AU  - A. S. Konkina
TI  - Numerical research of the mathematical model for traffic flow
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2019
SP  - 128
EP  - 134
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/
LA  - en
ID  - VYURU_2019_12_4_a10
ER  - 
%0 Journal Article
%A A. S. Konkina
%T Numerical research of the mathematical model for traffic flow
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2019
%P 128-134
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/
%G en
%F VYURU_2019_12_4_a10
A. S. Konkina. Numerical research of the mathematical model for traffic flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 4, pp. 128-134. http://geodesic.mathdoc.fr/item/VYURU_2019_12_4_a10/

[1] Hwang F. K., Richards D., Winter P., The Steiner Tree Problem, Elsevier Science Publishers, Amsterdam, 1992

[2] Siebel F., Mauser W., “On the Fundamental Diagram of Traffic Flow”, SIAM Journal on Applied Mathematics, 66 (2006), 1150–1162 | DOI | MR | Zbl

[3] Kurzhanski A. A., Kurzhanski A. B., “Smart City Crossroads”, Computer Research and Modeling, 10:3 (2015), 347–358 (in Russian) | DOI

[4] Zgonnikov A., Lubashevsky I., “Double-Well Dynamics of Noise-Driven Control Activation in Human Intermittent Control: The Case of Stick Balancing”, Cognitive Processing, 16:4 (2015), 351–358 | DOI

[5] Gorodokin V., Almetova Z., Shepelev V., “Algorithm of Signalized Crossroads Passage Within the Range of Permissive-to-Restrictive Signals Exchange”, Transportation Research Procedia, 36 (2018), 225–230 | DOI

[6] Banasiak J., Falkiewicz A., Namayanya P., “Asymptotic State Lumping in Transport and Diffusion Problems on Networks with Applications to Population Problems”, Mathematical Models and Methods in Applied Sciences, 26:2 (2016), 215–247 | DOI | MR | Zbl

[7] Oskolkov A. P., “Nonlocal Problems for Some Class Nonlinear Operator Equations Arising in the Theory Sobolev Type Equations”, Zapiski LOMI, 198, 1991, 31–48 (in Russian) | Zbl

[8] Sviridyuk G. A., Zagrebina S. A., Konkina A. S., “The Oskolkov Equations on the Geometric Graphs as a Mathematical Model of the Traffic Flow”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 148–154 | DOI | Zbl

[9] Oskolkov A. P., “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, Zapiski LOMI, 59, 1976, 133–177 (in Russian) | Zbl

[10] Zagrebina S. A., Konkina A. S., “The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:1 (2015), 132–136 | DOI | Zbl

[11] Bayazitova A. A., “On the Generalized Boundary-Value Problem for Linear Sobolev Type Equations on the Geometric Graph”, Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 10:3 (2018), 5–11 | Zbl