@article{VYURU_2019_12_3_a7,
author = {V. M. Deundyak and Yu. V. Kosolapov},
title = {The use of the direct sum decomposition algorithm for analyzing the strength of some {McEliece} type cryptosystems},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {89--101},
year = {2019},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a7/}
}
TY - JOUR AU - V. M. Deundyak AU - Yu. V. Kosolapov TI - The use of the direct sum decomposition algorithm for analyzing the strength of some McEliece type cryptosystems JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 89 EP - 101 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a7/ LA - ru ID - VYURU_2019_12_3_a7 ER -
%0 Journal Article %A V. M. Deundyak %A Yu. V. Kosolapov %T The use of the direct sum decomposition algorithm for analyzing the strength of some McEliece type cryptosystems %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 89-101 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a7/ %G ru %F VYURU_2019_12_3_a7
V. M. Deundyak; Yu. V. Kosolapov. The use of the direct sum decomposition algorithm for analyzing the strength of some McEliece type cryptosystems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 89-101. http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a7/
[1] McEliece R. J., “A Public-Key Cryptosystem Based on Algebraic Coding Theory”, DSN Progress Report, 42–44 (1978), 114–116
[2] Sidel'nikov V. M., Shestakov S. O., “On an Encoding System Constructed on the Basis of Generalized Reed–Solomon Codes”, Discrete Mathematics and Applications, 2:4 (1992), 439–444 | DOI | MR | Zbl
[3] Deundyak V. M., Druzhinina M. A., Kosolapov Yu. V., “Modification of the Sidelnikov–Shestakov Cryptanalytic Algorithm for Generalized Reed–Solomon Codes and its Software Implementation”, Izvestiya vysshih uchebnyh zavedenij. Severo-Kavkazskij region. Tekhnicheskie nauki, 2006, no. 4, 15–19 (in Russian)
[4] Wieschebrink C., “Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes”, Third International Workshop (Berlin, 2010), 61–72 | MR | Zbl
[5] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov Cryptosystem”, Advances in Cryptology–EUROCRYPT 2007, Lecture Notes Computer Science, 4515, 347–360 | DOI | MR | Zbl
[6] Borodin M. A., Chizhov I. V., “Effective Attack on the McEliece Cryptosystem Based on Reed–Muller Codes”, Discrete Mathematics and Applications, 26:1 (2014), 273–280 | DOI | MR | Zbl
[7] Deundyak V. M., Kosolapov Yu. V., “Cryptosystem on Induced Group Codes”, Modelling and Analysis of Information Systems, 23:2 (2016), 137–152 | MR
[8] Kosolapov Yu. V., Shigaev A. N., “On the Support Splitting Algorithm for Induced Codes”, Modelling and Analysis of Information Systems, 25:3 (2018), 276–290 (in Russian) | MR
[9] Sidel'nikov V. M., Coding Theory, Fizmatlit, M., 2008
[10] Morelos-Zaragoza R. H., The Art of Error Correcting Coding, John Wiley Sons, Chichester, West Sussex, 2006
[11] Massey J. L., “Minimal Codewords and Secret Sharing”, Proceeding of 6th Joint Swedish-Russian Workshop on Information Theory, 1993, 276–279
[12] Avgustinovich S. V., Gorkunov E. V., “On Automorphisms of Linear Codes over a Simple Field”, Siberian Electronic Mathematical Reports, 14 (2017), 210–217 (in Russian) | MR | Zbl
[13] Sendrier N., “On the Concatenated Structure of a Linear Code”, Applicable Algebra in Engineering, Communication and Computing, 9:3 (1998), 221–242 | DOI | MR | Zbl
[14] Berger T. P., Ourivski A. V., “Construction of New MDS Codes from Gabidulin Codes”, Proceedings of ACCT'9, 2004, 40–47
[15] Assmus E. F., “The Category of Linear Codes”, IEEE Transaction on Information Theory, 44:2 (1998), 612–629 | DOI | MR | Zbl
[16] Fripertinger H., Kerber A., “Isometry Classes of Indecomposable Linear Codess”, Lecture Notes in Computer Science, 948, 1995, 194–204 | DOI | MR | Zbl
[17] Sidel'nikov V. M., “A Public-Key Cryptosystem Based on Binary Reed–Muller Codes”, Discrete Mathematics and Applications, 4:3 (1994), 191–208 | DOI | MR | MR | Zbl
[18] Deundyak V. M., Kosolapov Yu. V., “On the Berger–Loidreau Cryptosystem on the Tensor Product of Codes”, Journal of Computational and Engineering Mathematics, 5:2 (2018), 16–33 | DOI | MR | Zbl
[19] Krasavin A. A., “Using the Modified $ (u | u + v) $-Construction in the McEliece Cryptosystem”, Trudy MFTI, 10:2 (2018), 189–191 (in Russian)
[20] Kabatiansky G., Tavernier C., “A New Code-Based Cryptosystem via Pseudorepetition of Codes”, Proceedings of ACCT XVI, 2018, 189–191
[21] Deundyak V. M., Kosolapov Yu. V., “Using the Tensor Product of Reed–Muller Codes in an Asymmetric McEliece Type Cryptosystem and Analyzing its Resistance to Attacks on a Cipher”, Computational Technologies, 22:4 (2017), 43–60 (in Russian) | MR