Mots-clés : mobile OCR
@article{VYURU_2019_12_3_a6,
author = {K. B. Bulatov},
title = {A method to reduce errors of string recognition based on combination of several recognition results with per-character alternatives},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {74--88},
year = {2019},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a6/}
}
TY - JOUR AU - K. B. Bulatov TI - A method to reduce errors of string recognition based on combination of several recognition results with per-character alternatives JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 74 EP - 88 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a6/ LA - en ID - VYURU_2019_12_3_a6 ER -
%0 Journal Article %A K. B. Bulatov %T A method to reduce errors of string recognition based on combination of several recognition results with per-character alternatives %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 74-88 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a6/ %G en %F VYURU_2019_12_3_a6
K. B. Bulatov. A method to reduce errors of string recognition based on combination of several recognition results with per-character alternatives. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 74-88. http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a6/
[1] Bulatov K., Arlazarov V. V., Chernov T. et al., “Smart IDReader: Document Recognition in Video Stream”, Proceeding 14th International Conference on Document Analysis and Recogntiion, v. 6, 2017, 39–44 | DOI
[2] Burie J.-C., Chazalon J., Coustaty M. et al., “ICDAR 2015 Competition on Smartphone Document Capture and OCR”, Proceeding 13th International Conference on Document Analaysis and Recognition, 2015, 1161–1165 | DOI
[3] Puybareau E., Geraud T., “Real-Time Document Detection in Smartphone Videos”, Proceeding 25th IEEE International Conference on Image Processing, 2018, 1498–1502 | DOI
[4] Arlazarov V. V., Zhukovsky A., Krivtsov V et al., “Analysis of Using Stationary and Mobile Small-Scale Digital Video Cameras for Document Recognition”, Information Technologies and Computation Systems, 2014, no. 3, 71–78 (in Russian)
[5] Chernov T., Kolmakov S., Nikolaev D., “An Algorithm for Detection and Phase Estimation of Protective Elements Periodic Lattice on Document Image”, Pattern Recognition and Image Analysis, 27:1 (2017), 53–65 | DOI
[6] Arlazarov V. V., Bulatov K., Chernov T., Arlazarov V. L., A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream, 2018, arXiv: 1807.05786 | Zbl
[7] Kittler J., Hatef M., Duin R. P. W., Matas J., “On Combining Classifiers”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:3 (1998), 226–239 | DOI
[8] Kuncheva L. I., Bezdek J. C., Duin R. P. W., “Decision Templates for Multiple Classifier Fusion: an Experimental Comparison”, Pattern Recognition, 34:2 (2001), 299–314 | DOI | Zbl
[9] Fiscus J. G., “A Post-Processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER)”, Proceeding IEEE Workshop on Automatic Speech Recognition and Understanding, 1997, 347–354
[10] Wemhoener D., Yalniz I. Z., Manmatha R., “Creating an Improved Version Using Noisy OCR from Multiple Editions”, Proceeding 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, 160–164 | DOI
[11] Stuner B., Chatelain C., Paquet T., LV-ROVER: Lexicon Verified Recognizer Output Voting Error Reduction, 2017, arXiv: 1707.07432
[12] Llobet R., Cerdan-Navarro J.-R., Perez-Cortes J.-C., Arlandis J., “OCR Post-Processing Using Weighted Finite-State Transducers”, Proceeding 20th International Conference on Pattern Recognition, 2010, 2021–2024 | DOI
[13] Bulatov K. B., Kirsanov V. Yu., Arlazarov V. V. et al., “Methods of Recognition Results Integration for Document Text Fields in a Video Dtream of a Mobile Device”, Bulletin of the Russian Foundation for Basic Research, 92:4 (2016), 109–115 (in Russian) | DOI
[14] Pattern Recognition. Classification. Forecasting. Mathematical Tecniques and Their Application, Nauka, M., 1989 (in Russian)
[15] Krizhevsky A., Sutskever I., Hinton G. E., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, v. 1, 2015, 1097–1105
[16] Sankoff D., Kruskal J., Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Center for the Study of Language and Information, Stanford, 1999 | MR
[17] Yujian L., Bo L., “A Normalized Levenshtein Distance Metric”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:6 (2007), 1091–1095 | DOI
[18] Ing-Jr Ding, Chih-Ta Yen, Yen-Ming Hsu, “Developments of Machine Learning Schemes for Dynamic Time-Wrapping-Based Speech Recognition”, Mathematical Problems in Engineering, 2013, 542680, 10 pp. | DOI | Zbl
[19] Casenave T., “Overestimation for Multiple Sequence Alignment”, IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology (CIBCB), 2007, 159–164 | DOI
[20] Zilbershtein S., “Using Anytime Algorithms in Intelligent Systems”, AI Magazine, 17 (1996), 73–83