Mots-clés : Sobolev type equations
@article{VYURU_2019_12_3_a3,
author = {A. O. Kondyukov and T. G. Sukacheva},
title = {A non-stationary model of the incompressible viscoelastic {Kelvin{\textendash}Voigt} fluid of non-zero order in the magnetic field of the {Earth}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {42--51},
year = {2019},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a3/}
}
TY - JOUR AU - A. O. Kondyukov AU - T. G. Sukacheva TI - A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 42 EP - 51 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a3/ LA - en ID - VYURU_2019_12_3_a3 ER -
%0 Journal Article %A A. O. Kondyukov %A T. G. Sukacheva %T A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 42-51 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a3/ %G en %F VYURU_2019_12_3_a3
A. O. Kondyukov; T. G. Sukacheva. A non-stationary model of the incompressible viscoelastic Kelvin–Voigt fluid of non-zero order in the magnetic field of the Earth. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 42-51. http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a3/
[1] Oskolkov A. P., “Initial-Boundary Value Problems for the Equations of the Motion of the Kelvin–Voight and Oldroyd Fluids”, Proceedings of the Steklov Institute of Mathematics, 179, 1988, 126–164 (in Russian)
[2] Hide R., On Planetary Atmospheres and Interiors, American Mathematical Society, Providence, 1971
[3] Sukacheva T. G., Kondyukov A. O., “Phase Space of a Model of Magnetohydrodynamics”, Differential Equations, 51:4 (2015), 502–509 | DOI | DOI | MR | MR | Zbl
[4] Kadchenko S. I., Kondyukov A. O., “Numerical Study of a Flow of Viscoelastic Fluid of Kelvin–Voigt Having Zero Order in a Magnetic Field”, Journal of Computational and Engineering Mathematics, 3:2 (2016), 40–47 | DOI | MR | Zbl
[5] Sukacheva T. G., Kondyukov A. O., “Phase Space of a Model of Magnetohydrodynamics of Nonzero Order”, Differential Equations, 53:8 (2017), 1054–1061 | DOI | DOI | MR | Zbl
[6] Kondyukov A. O., “Generalized Model of Incompressible Viscoelastic Fluid in the Earth's Magnetic Field”, Bulletin of the South Ural State University. Series: Mathematical. Mechanics. Physics, 8:3 (2016), 13–21 (in Russian) | Zbl
[7] A.O. Kondyukov, T.G. Sukacheva, S.I. Kadchenko, L.S. Ryazanova, “Computational Experiment for a Class of Mathematical Models of Magnetohydrodynamics”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 10:1 (2017), 149–155 | DOI
[8] Sviridyuk G. A., Sukacheva T. G., “Phase Spaces of a Class of Operator Equations”, Differential Equations, 26:2 (1990), 250–258 (in Russian) | MR | Zbl
[9] Sviridyuk G. A., Sukacheva T. G., “The Cauchy Problem for a Class of Semilinear Equations of Sobolev Type”, Sibirskii matematicheskii zhurnal, 31:5 (1990), 109–119 (in Russian) | MR | Zbl
[10] Sviridyuk G. A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[11] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[12] Matveeva O. P., Sukacheva T. G., The Mathematical Models of a Viscoelastic Incompressible Fluid of Nonzero Order, Publishing Center of South Ural State University, Chelyabinsk, 2014 (in Russian)
[13] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 57:3 (1993), 192–207 (in Russian) | MR | Zbl
[14] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, Berlin, 1981 | DOI | MR | Zbl
[15] Sviridyuk G. A., “On a Model of Weakly Viscoelastic Fluid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 (in Russian) | MR | Zbl