@article{VYURU_2019_12_3_a2,
author = {O. V. Kirichenko and S. V. Revina},
title = {On the stability of two-dimensional flows close to the shear},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {28--41},
year = {2019},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a2/}
}
TY - JOUR AU - O. V. Kirichenko AU - S. V. Revina TI - On the stability of two-dimensional flows close to the shear JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 28 EP - 41 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a2/ LA - en ID - VYURU_2019_12_3_a2 ER -
%0 Journal Article %A O. V. Kirichenko %A S. V. Revina %T On the stability of two-dimensional flows close to the shear %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 28-41 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a2/ %G en %F VYURU_2019_12_3_a2
O. V. Kirichenko; S. V. Revina. On the stability of two-dimensional flows close to the shear. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 28-41. http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a2/
[1] Dolzhanskii F. V., Lectures on Geophysical Hydrodynamics, IVM RAN, M., 2006 (in Russian)
[2] Andreev V. K., “On the Solution of an Inverse Problem Simulating Two-Dimensional Motion of a Viscous Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:4 (2016), 5–16 | DOI | Zbl
[3] Sun-Chul Kim, Tomoyuki Miyaji, Hisashi Okamoto, “Unimodal Patterns Appearing in the Two-Dimensional Navier–Stokes Flows Under General Forcing at Large Reynolds Numbers”, Nonlinearity, 28:9 (2017), 234–246 | MR
[4] Kalashnik M., Kurgansky M., “Nonlinear Dynamics of Long-Wave Perturbations of the Kolmogorov Flow for Large Reynolds Numbers”, Ocean Dynamics, 68 (2018), 1001–1012 | DOI
[5] Meshalkin L. D., Sinai Ia.G. Investigation of the Stability of a Stationary Solution of a System of Equations for the Plane Movement of an Incompressible Viscous Liquid, Journal of Applied Mathematics and Mechanics, 25:6 (1961), 1700–1705 | DOI | MR | Zbl
[6] Yudovich V. I., “Instability of Viscous Incompressible Parallel Flows with Respect to Spatially Periodic Perturbations”, Numerical Methods for Problems in Mathematical Physics, M., 1966, 242–249 (in Russian)
[7] Yudovich V. I., “Natural Oscillations Arising from Loss of Stability in Parallel Flows of a Viscous Liquid under Longwavelength Periodic Disturbances”, Fluid Dynamics, 8 (1973), 26–29
[8] Melekhov A. P., Revina S. V., “Onset of Self-Oscillations upon the Loss of Stability of Spatially Periodic Two Dimensional Viscous Fluid Flows Relative to Long-Wave Perturbations”, Fluid Dynamics, 43:2 (2008), 203–216 | MR | Zbl
[9] Revina S. V. Recurrence Formulas for Long Wavelength Asymptotics in the Problem of Shear Flow Stability, Computational Mathematics and Mathematical Physics, 53:8 (2013), 1207–1220 | DOI | DOI | MR | Zbl
[10] Revina S. V. Stability of the Kolmogorov Flow and Its Modifications, Computational Mathematics and Mathematical Physics, 57:6 (2017), 995–1012 | DOI | DOI | MR | Zbl
[11] Obukhov A. M., “Kolmogorov Flow and Laboratory Simulation of It”, Russian Mathematical Surveys, 38:4 (1983), 113–126 | DOI | MR