Anisotropic diffusion in anisotropic Stepanov spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 153-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a problem on the image processing and computer vision. A wide range of methods allows to solve problems of this type. The methods of partial differential equations are the most useful and interesting ones. A non-linear diffusion takes special place in these studies. In this context, fundamental theoretical foundation is a central part of this approach. Therefore, we introduce a new functional class of spaces, formulate and prove the lemma on the equivalent norms in anisotropic Stepanov spaces. Another important result of this study is the lemma that the anisotropic Stepanov spaces are Banach. In addition, we obtain the theorem on the solvability of the equation of anisotropic diffusion in anisotropic Stepanov spaces. The results can be applied to the image processing and computer vision. Also, the obtained results open the new view to this problem.
Keywords: Nikol'skii spaces, anisotropic Stepanov spaces, differential equations.
Mots-clés : diffusion, anisotropic diffusion
@article{VYURU_2019_12_3_a12,
     author = {V. A. Gorlov},
     title = {Anisotropic diffusion in anisotropic {Stepanov} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {153--160},
     year = {2019},
     volume = {12},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a12/}
}
TY  - JOUR
AU  - V. A. Gorlov
TI  - Anisotropic diffusion in anisotropic Stepanov spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2019
SP  - 153
EP  - 160
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a12/
LA  - en
ID  - VYURU_2019_12_3_a12
ER  - 
%0 Journal Article
%A V. A. Gorlov
%T Anisotropic diffusion in anisotropic Stepanov spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2019
%P 153-160
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a12/
%G en
%F VYURU_2019_12_3_a12
V. A. Gorlov. Anisotropic diffusion in anisotropic Stepanov spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 153-160. http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a12/

[1] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011 | MR | Zbl

[2] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin–New York, 1992 | MR | Zbl

[3] Perona P., Malik J., “Scale-Space and Edge Detection Using Anisotropic Diffusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:7 (1990), 629–639 | DOI

[4] Besov O. V., Il'in V. P., Nikol'skii S. M., Integral Representations of Functions and Embedding Theorems, Nauka, M., 1975 (in Russian)

[5] Nikol'skii S. M., Approximation of Functions of Many Variables and Embedding Theorems, Nauka, M., 1977 (in Russian)

[6] Kostin V. A., Kostin A. V., To the Theory of Stepanov Function Spaces, VSU Press, Voronezh, 2007 (in Russian)

[7] Levitan B. M., Almost Periodic Functions, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, M., 1953 (in Russian)

[8] Hille E., Phillips R. S., Functional Analysis and Semi-Groups, American Mathematical Society, Providence, 1957 | MR