Mots-clés : Poisson's equation
@article{VYURU_2019_12_3_a11,
author = {V. P. Shapeev and L. S. Bryndin and V. A. Belyaev},
title = {Solving elliptic equations in polygonal domains by the least squares collocation method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {140--152},
year = {2019},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a11/}
}
TY - JOUR AU - V. P. Shapeev AU - L. S. Bryndin AU - V. A. Belyaev TI - Solving elliptic equations in polygonal domains by the least squares collocation method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 140 EP - 152 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a11/ LA - ru ID - VYURU_2019_12_3_a11 ER -
%0 Journal Article %A V. P. Shapeev %A L. S. Bryndin %A V. A. Belyaev %T Solving elliptic equations in polygonal domains by the least squares collocation method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 140-152 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a11/ %G ru %F VYURU_2019_12_3_a11
V. P. Shapeev; L. S. Bryndin; V. A. Belyaev. Solving elliptic equations in polygonal domains by the least squares collocation method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 3, pp. 140-152. http://geodesic.mathdoc.fr/item/VYURU_2019_12_3_a11/
[1] Guo Chen, Zhilin Li, Ping Lin, “A Fast Finite Difference Method for Biharmonic Equations on Irregular Domains and its Application to an Incompressible Stokes Flow”, Advances in Computational Mathematics, 29:2 (2008), 113–133 | DOI | MR | Zbl
[2] Shapeev V. P., Belyaev V. A., “Solving the Biharmonic Equation with High Order Accuracy in Irregular Domains by the Least Squares Collocation Method]”, Numerical Methods and Programming, 19:4 (2018), 340–355 (in Russian)
[3] Timoshenko S. P., Woinowsky-Krieger S., Theory of Plates and Shells, McGraw-Hill, N.-Y.–Toronto–London, 1959 | MR
[4] Shapeev V. P., Belyaev V. A., “Solving Boundary Value Problems for Partial Differential Equations in Triangular Domains by the Least Squares Collocation Method”, Numerical Methods and Programming, 19:1 (2018), 96–111 (in Russian)
[5] Sorokin S.B., “Preconditioning in the Numerical Solution to a Dirichlet Problem for the Biharmonic Equation”, Numerical Analysis and Applications, 4:2 (2011), 167–174 | DOI | Zbl
[6] Shapeev V. P., Belyaev V. A., “Versions of High Order Accuracy Collocation and Least Residuals Method in the Domain with a Curvilinear Boundary”, Computational Technologies, 21:5 (2016), 95–110 (in Russian) | Zbl
[7] Belyaev V. A., Shapeev V. P., “The Versions of Collocation and Least Residuals Method for Solving Problems of Mathematical Physics in the Trapezoidal Domains”, Computational Technologies, 22:4 (2017), 22–42 (in Russian)
[8] Belyaev V. A., Shapeev V. P., “Versions of the Collocation and Least Residuals Method for Solving Problems of Mathematical Physics in the Convex Quadrangular Domains”, Modeling and Analysis of Information Systems, 24:5 (2017), 629–648 (in Russian) | DOI | MR
[9] Belyaev V. A., Shapeev V. P., “Solving the Dirichlet Problem for the Poisson Equation by the Least Squares Collocation Method with Given Discrete Boundary Domain”, Computational Technologies, 23:3 (2018), 15–30 (in Russian) | DOI
[10] Fedorenko R. P. The Speed of Convergence of One Iterative Process, Computational Mathematics and Mathematical Physics, 4:3 (1964), 227–235 | DOI | MR
[11] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, 1991 | MR
[12] Golushko S. K., Idimeshev S. V., Shapeev V. P., “Application of Collocations and Least Residuals Method to Problems of the Isotropic Plates Theory”, Computational Technologies, 18:6 (2013), 31–43 (in Russian)