Software package WAVES-L for simulation and visualization of wave processes in an elastic layer
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 1, pp. 110-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The software package WAVES-L is intended for fast and interactive simulation of wavefields generated by a prescribed surface load in an elastic layer with three possible types of boundary conditions at the waveguide's bottom surface is considered. The algorithms realized in the programme are based on the explicit integral representations of the source-induced wavefields and corresponding asymptotic expansions for the guided waves propagating from the source to infinity. In the nearfield, including the points beneath the loading area, the amplitude-frequency characteristics of the total wavefield are computed using the numerical integration of improper contour integrals. The calculation of dispersion curves characteristics and eigenforms of guided waves is realized as well. WAVES-L is supplied with a user-friendly interface, which supports convenient change of the input parameters and provides demonstrative visualization of wavefield dependencies on frequency and spatial variables. The software package has a potential application in ultrasonic non-destructive testing and structural health monitoring of thin-walled engineering constructions. It can also be used in education, within the framework of laboratory classes in the corresponding specialization. The article presents examples of screenshots and graphs of experimental validation of the calculated results.
Keywords: elastic layer, integral and asymptotic representation of wavefields, graphical user interface.
Mots-clés : normal modes
@article{VYURU_2019_12_1_a8,
     author = {E. V. Glushkov and N. V. Glushkova and S. I. Fomenko and A. A. Eremin and A. A. Evdokimov and O. I. Novikov},
     title = {Software package {WAVES-L} for simulation and visualization of wave processes in an elastic layer},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {110--121},
     year = {2019},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a8/}
}
TY  - JOUR
AU  - E. V. Glushkov
AU  - N. V. Glushkova
AU  - S. I. Fomenko
AU  - A. A. Eremin
AU  - A. A. Evdokimov
AU  - O. I. Novikov
TI  - Software package WAVES-L for simulation and visualization of wave processes in an elastic layer
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2019
SP  - 110
EP  - 121
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a8/
LA  - ru
ID  - VYURU_2019_12_1_a8
ER  - 
%0 Journal Article
%A E. V. Glushkov
%A N. V. Glushkova
%A S. I. Fomenko
%A A. A. Eremin
%A A. A. Evdokimov
%A O. I. Novikov
%T Software package WAVES-L for simulation and visualization of wave processes in an elastic layer
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2019
%P 110-121
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a8/
%G ru
%F VYURU_2019_12_1_a8
E. V. Glushkov; N. V. Glushkova; S. I. Fomenko; A. A. Eremin; A. A. Evdokimov; O. I. Novikov. Software package WAVES-L for simulation and visualization of wave processes in an elastic layer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 1, pp. 110-121. http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a8/

[1] V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Academic Press, New York, 2014

[2] R. Lammering, U. Gabbert, M. Sinapius, T. Schuster, P. Wierach, Lamb-Wave Based Structural Health Monitoring in Polymer Composites, Springer International Publishing, Cham, 2018 | DOI

[3] J.E. Michaels, “Detection, Localization and Characterization of Damage in Plates with an in Situ Array of Spatially Distributed Ultrasonic Sensors”, Smart Materials and Structures, 17:3 (2008), 1–15 | DOI | MR

[4] Perov D. V., Rinkevich A. B., “Localization of Reflectors in Plates by Ultrasonic Testing with Lamb Waves”, Russian Journal of Nondestructive Testing, 53:4 (2017), 265–278 | DOI

[5] Vorovich I. I., Babeshko V. A., Dynamical Mixed Problems of Elasticity for Nonclassical Domains, Nauka, M., 1979 (in Russian)

[6] Grinchenko V. T., Meleshko V. V., Harmonic Oscillations and Waves in Elastic Solids, Nauka, Kiev, 1981 (in Russian)

[7] Glushkov Ye.V., Glushkova N. V., Krivonos A. S., “The Excitation and Propagation of Elastic Waves in Multilayered Anisotropic Composites”, Journal of Applied Mathematics and Mechanics, 74 (2010), 297–305 | DOI | MR | Zbl

[8] E. Glushkov, N. Glushkova, R. Lammering, A. Eremin, M.-N. Neumann, “Lamb Wave Excitation and Propagation in Elastic Plates with Surface Obstacles: Proper Choice of Central Frequencies”, Smart Materials and Structures, 20:015020 (2011), 1–11 | DOI

[9] E. Glushkov, N. Glushkova, A. Eremin, “Forced Wave Propagation and Energy Distribution in Anisotropic Laminate Composites”, Journal of the Acoustical Society of America, 129:5 (2011), 2923–2934 | DOI

[10] Glushkov E. V., Glushkova N. V., Fomenko S. I., “Influence of Porosity on Characteristics of Rayleigh Type Waves in Multilayered Half-Space”, Acoustical Physics, 57:2 (2011), 230–240 | DOI

[11] Glushkov E. V., Glushkova N. V., Fomenko S. I., Zhang C., “Surface Waves in Materials with Functionally Gradient Coatings”, Acoustical Physics, 58:3 (2012), 339–353 | DOI

[12] E. Glushkov, N. Glushkova, A. Eremin, R. Lammering, “Group Velocity of Cylindrical Guided Waves in Anisotropic Laminate Composites”, Journal of Acoustical Society of America, 135:1 (2014), 148–154 | DOI

[13] Sveshnikov A. G., “Principle of Limit Absorption for Waveguides”, Reports of the USSR Academy of Science, 78:3 (1951) (in Russian)

[14] Glushkova N. V., Determination and Accounting for Singular Terms in Problems of the Theory of Elasticity, D.Sc. Thesis, Krasnodar, 2010 (in Russian)

[15] S.J. Chapman, MATLAB Programming for Engineers, Cengage Learning, Toronto, 2016

[16] D. Alleyne, “A Two-Dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals”, Journal of the Acoustical Society of America, 89:3 (1991), 1159–1168 | DOI