Mots-clés : integer solution, polynomial algorithm
@article{VYURU_2019_12_1_a13,
author = {A. V. Panyukov},
title = {On the existence of an integer solution of the relaxed {Weber} problem for a tree network},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {150--155},
year = {2019},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a13/}
}
TY - JOUR AU - A. V. Panyukov TI - On the existence of an integer solution of the relaxed Weber problem for a tree network JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 150 EP - 155 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a13/ LA - en ID - VYURU_2019_12_1_a13 ER -
%0 Journal Article %A A. V. Panyukov %T On the existence of an integer solution of the relaxed Weber problem for a tree network %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 150-155 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a13/ %G en %F VYURU_2019_12_1_a13
A. V. Panyukov. On the existence of an integer solution of the relaxed Weber problem for a tree network. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 1, pp. 150-155. http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a13/
[1] Beresnev V. L., Discrete Location Problems and Polynomials of Boolean Variables, Sobolev Institute Press, Novosibirsk, 2005 (in Russian)
[2] Nickel S., Puerto J., Location Theory, Springer, Heidelberg, 2005 | Zbl
[3] Zabudskii G. G., Veremchuk N. S., “An Algorithm for Finding an Approximate Solution to the Weber Problem on a Line with Forbidden Gaps”, Journal of Applied and Industrial Mathematics, 10:1 (2016), 136–144 | DOI | MR | Zbl
[4] Zabudskii G. G., Koval A. A., “Solving a Maximin Location Problem on the Plane with Given Accuracy”, Automation and Remote Control, 75 (2014), 1221–1230 | DOI | MR | Zbl
[5] Panyukov A. V., Pelzwerger B. V., “Polynomial Algorithms to Finite Weber Problem for a Tree Network”, Journal of Computational and Applied Mathematics, 35 (1991), 291–296 | DOI | MR | Zbl
[6] Ivanko E. E., “Iterative Equitable Partition of Graph as a Model of Constant Structure Discrete Time Closed Semantic System”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:4 (2017), 26–34 | DOI | Zbl
[7] Panyukov A. V., “The Relaxation Polyhedron of Weber Problem”, Non-Smooth and Discontinuous Problems of Control and Optimization, Chelyabinsk, 1998, 171–174
[8] Panyukov A. V., “Location of a Tree Network for a Finite Set”, Abstracts of the Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications, Safary University, Kosice, 2013, 64