Neural net decoders for linear block codes
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 1, pp. 129-136
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The work is devoted to neural network decoders of linear block codes. Analytical methods for calculating synaptic weights based on a generator and parity-check matrices are considered. It is shown that to build a neural net decoder based on a parity-check matrix was sufficiently four layers feedforward neural net. The activation functions and weight matrices for each layer are determined, as well as the number of weights for the neural net decoder. An example of error correction with uses of the BCH neural net decoder is considered. As a special case of a neural network decoder built on the basis of a parity-check matrix, a model for decoding Hamming codes has been proposed. This is the two-layer feedforward neural net for with a neuron number equal to the length of the codeword and a number of weight coefficients equal to the square of the codeword length. The graphs of the number of a synaptic weight of neural net decoders based on the generator and parity-check matrices, on the number of bits and the number of corrected errors, are shown.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
neural network decoders, neural network classification.
Mots-clés : error-correction codes
                    
                  
                
                
                Mots-clés : error-correction codes
@article{VYURU_2019_12_1_a10,
     author = {V. N. Dumachev and A. N. Kopylov and V. V. Butov},
     title = {Neural net decoders for linear block codes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a10/}
}
                      
                      
                    TY - JOUR AU - V. N. Dumachev AU - A. N. Kopylov AU - V. V. Butov TI - Neural net decoders for linear block codes JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2019 SP - 129 EP - 136 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a10/ LA - en ID - VYURU_2019_12_1_a10 ER -
%0 Journal Article %A V. N. Dumachev %A A. N. Kopylov %A V. V. Butov %T Neural net decoders for linear block codes %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2019 %P 129-136 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a10/ %G en %F VYURU_2019_12_1_a10
V. N. Dumachev; A. N. Kopylov; V. V. Butov. Neural net decoders for linear block codes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 12 (2019) no. 1, pp. 129-136. http://geodesic.mathdoc.fr/item/VYURU_2019_12_1_a10/
