@article{VYURU_2018_11_4_a7,
author = {V. M. Adukov},
title = {Algorithm of polynomial factorization and its implementation in {Maple}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {110--122},
year = {2018},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a7/}
}
TY - JOUR AU - V. M. Adukov TI - Algorithm of polynomial factorization and its implementation in Maple JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 110 EP - 122 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a7/ LA - en ID - VYURU_2018_11_4_a7 ER -
%0 Journal Article %A V. M. Adukov %T Algorithm of polynomial factorization and its implementation in Maple %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 110-122 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a7/ %G en %F VYURU_2018_11_4_a7
V. M. Adukov. Algorithm of polynomial factorization and its implementation in Maple. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 110-122. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a7/
[1] Daniele V. G., Zich R. S., The Wiener–Hopf Method in Electromagnetics, ISMB Series, SciTech Publishing, New Jersey, 2014 | DOI
[2] Abrahams I. D., “On the Application of the Wiener–Hopf Technique to Problems in Dynamic Elasticity”, Wave Motion, 36 (2002), 311–333 | DOI | MR | Zbl
[3] Lawrie J. B., Abrahams I. D., “A Brief Historical Perspective of the Wiener–Hopf Technique”, Journal of Engineering Mathematics, 59 (2007), 351–358 | DOI | MR | Zbl
[4] Clancey K., Gohberg I., Factorization of Matrix Functions and Singular Integral Operators, Birkäuser, Basel, 1987 | MR
[5] Gohberg I. C., Feldman I. A., Convolution Equations and Projection Methods for Their Solution, American Mathematical Society, Providence, 1974 | MR | Zbl
[6] Rogosin S., Mishuris G., “Constructive Methods for Factorization of Matrix-Functions”, IMA Journal of Applied Mathematics, 81:2 (2016), 365–391 | DOI | MR | Zbl
[7] Kisil A. V., “A Constructive Method for an Approximate Solution to Scalar Wiener–Hopf Equations”, Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 469:2154 (2013), 20120721 | DOI | MR | Zbl
[8] Gautschi W., “On the Condition of Algebraic Equations”, Numerische Mathematik, 21:5 (1973), 405–424 | DOI | MR | Zbl
[9] Uhlig F., Are the Coefficients of a Polynomial Well-Condition Function of Its Roots?, Numerische Mathematik, 61:1 (1992), 383–393 | DOI | MR | Zbl
[10] Bini D. A., Böttcher A., “Polynomial Factorization through Toeplitz Matrix Computations”, Linear Algebra Application, 366 (2003), 25–37 | DOI | MR | Zbl
[11] Boyd D. W., “Two Sharp Inequalities for the Norm of a Factor of a Polynomials”, Mathematika, 39:2 (1992), 341–349 | DOI | MR | Zbl
[12] Adukov V. M., “Generalized Inversion of Block Toeplitz Matrices”, Linear Algebra Appliction, 274 (1998), 85–124 | DOI | MR | Zbl
[13] Adukov V. M, On Wiener–Hopf Factorization of Scalar Polynomials, 2018, arXiv: abs/1806.01646
[14] Gakhov F. D., Boundary Value Problems, Dover, N.Y., 1990 | MR | Zbl