Phase space of the initial-boundary value problem for the Oskolkov system of highest order
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 67-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In recent decades, the theory of Sobolev type equations is actively studied in various aspects. The application of the semigroup approach to the theory of singular Sobolev type equations has received a deep and wide development in the works of the scientific direction headed by G. A. Sviridyuk. This work is adjacent to this scientific direction. The first initial-boundary value problem for the Oskolkov system is investigated. In our case, the system simulates a plane-parallel incompressible Kelvin–Voigt fluid of the higher order. This problem has an advantage, since the phase space for the above system can be described completely at any values of the parameter that characterizes the elastic properties of the liquid. This article is devoted to presenting of this fact. The study is carried out within the framework of the theory of semi-linear autonomous Sobolev type equations on the basis of the concepts of a relatively spectrally bounded operator and a quasi-stationary trajectory.
Mots-clés : Sobolev type equations
Keywords: phase space, quasi-stationary trajectories, Oskolkov systems, incompressible viscoelastic Kelvin–Voigt fluid.
@article{VYURU_2018_11_4_a4,
     author = {A. O. Kondiukov and T. G. Sukacheva},
     title = {Phase space of the initial-boundary value problem for the {Oskolkov} system of highest order},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {67--77},
     year = {2018},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a4/}
}
TY  - JOUR
AU  - A. O. Kondiukov
AU  - T. G. Sukacheva
TI  - Phase space of the initial-boundary value problem for the Oskolkov system of highest order
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 67
EP  - 77
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a4/
LA  - ru
ID  - VYURU_2018_11_4_a4
ER  - 
%0 Journal Article
%A A. O. Kondiukov
%A T. G. Sukacheva
%T Phase space of the initial-boundary value problem for the Oskolkov system of highest order
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 67-77
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a4/
%G ru
%F VYURU_2018_11_4_a4
A. O. Kondiukov; T. G. Sukacheva. Phase space of the initial-boundary value problem for the Oskolkov system of highest order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 67-77. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a4/

[1] Oskolkov A. P., “Initial-Boundary Value Problems for the Equations of the Motion of the Kelvin–Voight and Oldroyd Fluids”, Proceedings of the Steklov Institute of Mathematics (Trudy Matematicheskogo instituta imeni V. A. Steklova), 179, 1988, 126–164 (in Russian)

[2] Sviridyuk G. A., “On a Model of the Dynamics of an Incompressible Viscoelastic Fluid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 (in Russian) | Zbl

[3] Oskolkov A. P., “On a Quasilinear Parabolic System with a Small Parameter Approximating the Navier–Stokes System”, Zapiski nauchnykh seminarov POMI, 96, 1980, 233–236 (in Russian) | Zbl

[4] Sviridyuk G. A., “On the Variety of Solutions of a Certain Problem of an Incompressible Viscoelastic Fluid”, Differential Equations, 24:10 (1988), 1846–1848

[5] Sviridyuk G. A., Sukacheva T. G., “Phase Spaces of a Class of Operator Equations”, Differential Equations, 26:2 (1990), 250–258 | MR | Zbl

[6] Sviridyuk G. A., Sukacheva T. G., “The Cauchy Problem for a Class of Semilinear Equations of Sobolev Type”, Siberian Mathematical Journal, 31:5 (1990), 109–119 (in Russian) | MR | Zbl

[7] Sviridyuk G. A., “On the General Theory of Semigroups of Operators”, Russian Mathematical Surveys (Uspekhi Matematicheskikh Nauk), 49:4 (1994), 47–74 (in Russian) | MR | Zbl

[8] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003 | DOI | MR | Zbl

[9] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 57:3 (1993), 192–207 (in Russian) | MR | Zbl

[10] Sviridyuk G. A., “Phase Spaces of Semilinear Equations of Sobolev Type with Relatively Strongly Sectorial Operators”, Algebra and Analysis, 6:5 (1994), 216–237 (in Russian)

[11] Sviridyuk G. A., Yakupov M. M., “The Phase Space of the Initial-Boundary Value Problem for the Oskolkov System”, Differential Equations, 32:11 (1996), 1538–1543 | MR | Zbl

[12] Kondyukov A. O., Sukacheva T. G. Phase Space of the Initial-Boundary, “Value Problem for the Oskolkov System of Nonzero Order”, Computational Mathematics and Mathematical Physics, 55:5 (2015), 823–829 | DOI | MR | Zbl

[13] Leng S., Introduction to Differentiable Manifolds, Springer, N.Y., 2002 | MR

[14] Borisovich Yu. G., Zvyagin V. G., Sapronov Y. I., “Nonlinear Fredholm Mappings and Leray-Schauder Theory”, Russian Mathematical Surveys, 32:4 (1977), 3–54 (in Russian) | MR | Zbl

[15] Manakova N. A., Optimal Control Problems for Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR

[16] Sagadeeva M. A., Dichotomies of Solutions of Linear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR

[17] Zamyshlyaeva A. A., Linear Sobolev Type Equations of Higher Order, Publishing center of SUSU, Chelyabinsk, 2012 (in Russian) | MR

[18] Zagrebina S. A., Stable and Unstable Manifolds of Solutions of Semilinear Sobolev Type Equations, Publishing center of SUSU, Chelyabinsk, 2016 (in Russian)

[19] Zagrebina S. A., “A Multipoint Initial-Final Value Problem for a Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 (in Russian) | DOI | Zbl

[20] Zamyshlyaeva A. A., Bychkov E. V., “The Cauchy Problem for the Sobolev Type Equetion of Higher Order”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:1 (2018), 5–14 | DOI | MR | Zbl

[21] A.V. Keller, “On the Computational Efficiency of the Algorithm of the Numerical Solution of Optimal Control Problems for Models of Leontieff Type”, Journal of Computational and Engineering Mathematics, 2:2 (2015), 39–59 | DOI | MR | Zbl

[22] G.A. Sviridyuk, N.A. Manakova, “The Barenblatt–Zheltov–Kochina Model with Additive White Noise in Quasi-Sobolev Spaces”, Journal of Computational and Engineering Mathematics, 3:1 (2016), 61–67 | DOI | MR | Zbl