Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 41-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the problem of the magnetohydrodynamical flow of incompressible conductive polymeric liquid inside the flat channel in the magnetic field. There is an electric current flowing on the walls of the channel. The walls themselves have different constant temperature. The magnetohydrodynamical model we use in the paper is based on the modified rheological Pokrovskii–Vinogradov model with additional Maxwell equations. We obtain the boundary value problem for this model and look for specific steady-state solutions which are alike the well-known viscous flows of Poiseuille and Couette. The problem for such solutions is reduced to a boundary value problem for a system of nonlinear ordinary differential equations, which in turn is transformed to the system of integral equation. We solve this system by fixed-point iterations. We examine the solutions for various values of parameters and study the influence of these parameters at the flow regime. The results of the paper show that is possible to control the flow of liquid polymer in a flat channel using an external magnetic field and non-inform heating.
Keywords: magnetohydrodynamics, viscoelasticity, polymeric liquid, stationary solution.
@article{VYURU_2018_11_4_a2,
     author = {A. M. Blokhin and R. E. Semenko},
     title = {Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {41--54},
     year = {2018},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a2/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - R. E. Semenko
TI  - Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 41
EP  - 54
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a2/
LA  - ru
ID  - VYURU_2018_11_4_a2
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A R. E. Semenko
%T Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 41-54
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a2/
%G ru
%F VYURU_2018_11_4_a2
A. M. Blokhin; R. E. Semenko. Stationary magnetohydrodynamical flows of non-isothermal polymeric liquid in the flat channel. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 41-54. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a2/

[1] P.G. De Gennes, Concepts in Polymer Physics, Cornell University Press, New York, 1979

[2] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Clarendon, Oxford, 1986

[3] R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, v. 2, Wiley, New York, 1987 | MR

[4] T.C.B. McLeish, R.G. Larson, “Molecular Constitutive Equations for a Class of Branched Polymers: the Pom-Pom Polymer”, Journal of Rheology, 42:1 (1998), 81–110 | DOI

[5] W.M.H Verbeeten, G.W.M Peters, F.P.T. Baaijens, “Differential Constitutive Equations for Polymer Melt: the Extended Pom-Pom Model”, Journal of Rheology, 45:4 (2001), 821–841 | DOI

[6] J.G. Oldroyd, “On the Formulation of Rheological Equations of State”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 200:1063 (1950), 523–541 | DOI | MR | Zbl

[7] A.I. Leonov, A.N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, New York, 1994 | DOI

[8] V.N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, New York–Dordrecht–Heidelberg, 2010 | DOI

[9] Altukhov Yu. A., Gusev A. S., Pyshnograi G. V., Mesoscopic Theory of the Liquid Polymeric Systems, AltGPA, Barnaul, 2012 (in Russian)

[10] P. Bala Anki Reddy, S. Suneetha, N. Bhaskar Reddy, “Numerical Study of Magnetohydrodynamics (MHD) Boundary Layer Slip Flow of a Maxwell Nanofluid over an Exponentially Stretching Surface with Convective Boundary Condition”, Propulsion and Power Research, 6:4 (2017), 259–268 | DOI

[11] R. Ellahi, “The Effects of MHD and Temperature Dependent Viscosity on the Flow of Non-Newtonian Nanofluid in a Pipe: Analytical Solutions”, Applied Mathematical Modelling, 37:3 (2013), 451–1467 | DOI | MR

[12] Sedov L. I., Mechanics of Continuous Media, v. 1, Nauka, M., 1997 (in Russian)

[13] Loitsanskii L. G., Mechanics of Liquid and Gas, Nauka, M., 1978 (in Russian)

[14] Vatazhin A. B., Lyubimov G. A., Regirer S. A., Magnetohydrodynamical Flows in Channels, Nauka, M., 1970 (in Russian)

[15] Bai Shiyi, Introduction to the Theory of Compressible Flow, Van Nostrand, N.Y., 1959 | MR

[16] Blokhin A. M., Rudometova A. S., “Stationary Solutions of the Equations for Nonisothermal Electroconvection of a Weakly Conducting Incompressible Polymeric Liquid”, Journal of Applied and Industrial Mathematics, 9:2 (2015), 147–156 | DOI | MR | Zbl

[17] Y. Shibata, “On the R-Boundedness for the Two Phase Problem with Phase Transition: Compressible-Incompressible Model Problem”, Funkcialaj Ekvacioj, 59:2 (2016), 243–287 | DOI | MR | Zbl

[18] Slezkin N. A., Dynamics of Viscous Incompressible Liquid, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, M., 1955 (in Russian)

[19] Akhiezer A. I., Akhiezer I. A., Electromagnetism and Electromagnetic Waves, Vysshaya Shkola, M., 1985 (in Russian)

[20] Nordling C., Osterman D., Physics Handbook for Science and Engineering, Professional Pub Service, St. Petersburg, 2004 (in Russian)

[21] Landau L. D., Lifshitz E. M., Electrodynamics of Continuous Media, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, M., 1960 (in Russian)