Mathematical modelling of possible mechanisms for the formation of hot spots
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 154-160
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of the consequences of an initiating shock propagating through a condensed substance on a free surface. To close the laws of conservation of mass, momentum and internal energy, the equation of state of a condensed substance was constructed. The form of this equation of state corresponded to the form of the equation of state of Mie–Gruneisen with the separation of pressure and internal energy into thermal and cold parts. The ratio of the thermal part of the pressure to the thermal part of the internal energy is determine by the Gruneisen coefficient, which in this work is a constant. The cold part of the pressure was described by potential in Theta form. The analysis of the results presented in the work shows that after the shock reaches the free surface, a strong rarefaction wave begins to propagate into the condensed matter, which causes the pressure to drop in the condensed matter and the stress greatly increases, which can lead to a discontinuity of the material and appearance of a separate microparticle. This confirmed the assumption that hot spots could appear as a result of the warming up and burning of the smallest droplets of condensed explosive during the collapse of a gas bubble.
Keywords: mathematical model, equation of state, continuity, hot spot, shock.
@article{VYURU_2018_11_4_a11,
     author = {F. G. Magazov and E. S. Shestakovskaya},
     title = {Mathematical modelling of possible mechanisms for the formation of hot spots},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {154--160},
     year = {2018},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a11/}
}
TY  - JOUR
AU  - F. G. Magazov
AU  - E. S. Shestakovskaya
TI  - Mathematical modelling of possible mechanisms for the formation of hot spots
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 154
EP  - 160
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a11/
LA  - ru
ID  - VYURU_2018_11_4_a11
ER  - 
%0 Journal Article
%A F. G. Magazov
%A E. S. Shestakovskaya
%T Mathematical modelling of possible mechanisms for the formation of hot spots
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 154-160
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a11/
%G ru
%F VYURU_2018_11_4_a11
F. G. Magazov; E. S. Shestakovskaya. Mathematical modelling of possible mechanisms for the formation of hot spots. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 154-160. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a11/

[1] Nigmatulin R. I., Fundamentals of Continuum Mechanics, Nauka, M., 1978 (in Russian)

[2] Kraiko A. N., Nigmatulin R. I., Starkov V. K., Sternin L. B., “Mechanics of Multiphase Media”, Itogi nauki i tekhniki. Gidromekhanika, 6, 1973, 93–174 (in Russian)

[3] Yanenko N. N., Solouhin R. I., Papyrin A. N., Fomin V. M., Supersonic Two-Phase Flows Under Conditions of Speed Nonequilibrium of Particles, Nauka, Novosibirsk, 1980 (in Russian)

[4] Kovalev Yu. M., Kuropatenko V. F., “Analysis of the Invariance of Some Mathematical Models of Multi-Media”, Bulletin of the South Ural State University. Series: Mathematics, Mechanics, Physics, 2012, no. 11, 4–7 (in Russian) | Zbl

[5] Kovalev Yu. M., Kovaleva E. A., “Mathematical Analysis of the Conservation Equations of Two-Phase Mixtures”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 29–37 (in Russian) | DOI | Zbl

[6] Orlenko L. P., Explosion and Impact Physics, Fizmatlit, M., 2008 (in Russian)

[7] Bowden F. P., Yoffe A. D., Initiation and Growth of Ex-Explosion in Liquids and Solids, Cambridge University Press, Cambridge, 1952

[8] Dubovik A. V., Bobolev V. K., Sensitivity of Liquid Explosive Systems to Impact, Nauka, M., 1978 (in Russian)

[9] Johansson C. H., Persson P. A., Explosive Detonation, Nauka, M., 1978 (in Russian)

[10] Fortov V. E., Equations of State of Matter: from an Ideal Gas to a Quark-Gluon Plasma, Fizmatlit, M., 2013 (in Russian)

[11] Kuropatenko V. F., Models of Continuum Mechanics, CSU, Chelyabinsk, 2007 (in Russian)

[12] Kovalev Yu. M., “Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:1 (2013), 34–42 (in Russian) | Zbl

[13] Antonov V. A., Grishin A. M., Kovalev Yu. M., Naimushina L. Yu., “Modeling Primer Cord Detonation in a Forest Canopy Without a Fire”, Combustion, Explosion, and Shock Waves, 29:4 (1993), 527–534 | DOI

[14] Voskoboynikov I. M., Afanasenkov A. N., Bogomolov V. M., “Generalized Shock Adiabatic for Organic Liquids”, Combustion, Explosion, and Shock Waves, 3:4 (1967), 359–364 | DOI

[15] Richtmyer R. D., Morton K. W., Difference Methods for Initial-Value Problems, Interscience, N.Y., 1967 | MR | Zbl

[16] Ivandaev A. I., “A Method of Introducing Pseudoviscosity and Its Use for Improving the Difference Solutions of Hydrodynamic Equations”, USSR Computational Mathematics and Mathematical Physics, 15:2 (1975), 238–242 | DOI | Zbl