@article{VYURU_2018_11_4_a10,
author = {D. A. Boyarkin and D. S. Krupenev and D. V. Iakubovskii},
title = {Machine learning in electric power systems adequacy assessment using {Monte{\textendash}Carlo} method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {146--153},
year = {2018},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/}
}
TY - JOUR AU - D. A. Boyarkin AU - D. S. Krupenev AU - D. V. Iakubovskii TI - Machine learning in electric power systems adequacy assessment using Monte–Carlo method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 146 EP - 153 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/ LA - ru ID - VYURU_2018_11_4_a10 ER -
%0 Journal Article %A D. A. Boyarkin %A D. S. Krupenev %A D. V. Iakubovskii %T Machine learning in electric power systems adequacy assessment using Monte–Carlo method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 146-153 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/ %G ru %F VYURU_2018_11_4_a10
D. A. Boyarkin; D. S. Krupenev; D. V. Iakubovskii. Machine learning in electric power systems adequacy assessment using Monte–Carlo method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 146-153. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/
[1] Kovalev G. F., Lebedeva L. M., Electric Power Systems Reliability, Nauka, Novosibirsk, 2015 (in Russian)
[2] D. Panasetsky, N. Tomin, N. Voropai, “Development of Software for Modelling Decentralized Intelligent Systems for Security Monitoring and Control in Power Systems”, IEEE Eindhoven PowerTech, 2015, 1–6
[3] Vapnik V. N., Chervonenkis A. Y., Theory of Pattern Recognition, Nauka, M., 1974 (in Russian) | MR
[4] L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | MR | Zbl
[5] Knuth D., The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley, 1981 | MR | Zbl
[6] M. Matsumoto, T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator”, ACM Transactions on Modeling and Computer Simulations, 8 (1998), 3–30 | DOI | Zbl
[7] Sobol I. M., Multidimensional Quadrature Formulas and Haar Functions, Nauka, M., 1969 (in Russian)
[8] Levin A. A., Chistyakov V. F., Tairov E. A., “On Application of the Structure of the Nonlinear Equations System, Describing Hydraulic Circuits of Power Plants, in Computations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:4 (2016), 53–62 | DOI | Zbl
[9] Krupenev D. S., Boyarkin D. A., Yakubovskiy D. V., “Generation of Random States of Electric Power Systems at Assessment of Their Reliability by the Monte Carlo Method”, Safety and Reliability of Power Industry, 2017, no. 10, 33–41 (in Russian)
[10] C.J. van Rijsbergen, Information Retrieval, Butterworths, London, 1979