Machine learning in electric power systems adequacy assessment using Monte–Carlo method
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 146-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the question of increasing the computational efficiency of the procedure for electric power systems adequacy assessment using the Monte Carlo method. In the framework of using this method, it is necessary to randomly generate a certain number of system states. As it is known the speed and accuracy of the calculation depends on the number of such states to be analyzed, so one of the ways to solve this problem is to reduce the this number while observing the required accuracy of the estimate. For this purpose it is proposed to use machine learning methods, whose task is to classify the calculated states of the electric power system. During the experiment, the support vector machines method and the random forest method were applied. The results of the calculations showed that these methods using allowed to reduce the number of random states of the system to be analyzed, thereby reducing the total time spent on calculations in general and proving the effectiveness of the proposed approach. Wherein the best results were obtained while using the random forest method.
Keywords: electric power systems, adequacy assessment, Monte Carlo method, machine learning.
@article{VYURU_2018_11_4_a10,
     author = {D. A. Boyarkin and D. S. Krupenev and D. V. Iakubovskii},
     title = {Machine learning in electric power systems adequacy assessment using {Monte{\textendash}Carlo} method},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {146--153},
     year = {2018},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/}
}
TY  - JOUR
AU  - D. A. Boyarkin
AU  - D. S. Krupenev
AU  - D. V. Iakubovskii
TI  - Machine learning in electric power systems adequacy assessment using Monte–Carlo method
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 146
EP  - 153
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/
LA  - ru
ID  - VYURU_2018_11_4_a10
ER  - 
%0 Journal Article
%A D. A. Boyarkin
%A D. S. Krupenev
%A D. V. Iakubovskii
%T Machine learning in electric power systems adequacy assessment using Monte–Carlo method
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 146-153
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/
%G ru
%F VYURU_2018_11_4_a10
D. A. Boyarkin; D. S. Krupenev; D. V. Iakubovskii. Machine learning in electric power systems adequacy assessment using Monte–Carlo method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 146-153. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a10/

[1] Kovalev G. F., Lebedeva L. M., Electric Power Systems Reliability, Nauka, Novosibirsk, 2015 (in Russian)

[2] D. Panasetsky, N. Tomin, N. Voropai, “Development of Software for Modelling Decentralized Intelligent Systems for Security Monitoring and Control in Power Systems”, IEEE Eindhoven PowerTech, 2015, 1–6

[3] Vapnik V. N., Chervonenkis A. Y., Theory of Pattern Recognition, Nauka, M., 1974 (in Russian) | MR

[4] L. Breiman, “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | MR | Zbl

[5] Knuth D., The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley, 1981 | MR | Zbl

[6] M. Matsumoto, T. Nishimura, “Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator”, ACM Transactions on Modeling and Computer Simulations, 8 (1998), 3–30 | DOI | Zbl

[7] Sobol I. M., Multidimensional Quadrature Formulas and Haar Functions, Nauka, M., 1969 (in Russian)

[8] Levin A. A., Chistyakov V. F., Tairov E. A., “On Application of the Structure of the Nonlinear Equations System, Describing Hydraulic Circuits of Power Plants, in Computations”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:4 (2016), 53–62 | DOI | Zbl

[9] Krupenev D. S., Boyarkin D. A., Yakubovskiy D. V., “Generation of Random States of Electric Power Systems at Assessment of Their Reliability by the Monte Carlo Method”, Safety and Reliability of Power Industry, 2017, no. 10, 33–41 (in Russian)

[10] C.J. van Rijsbergen, Information Retrieval, Butterworths, London, 1979