Mots-clés : Laplace transform
@article{VYURU_2018_11_4_a1,
author = {V. K. Andreev},
title = {On the solution properties of boundary problem simulating thermocapillary flow},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {31--40},
year = {2018},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a1/}
}
TY - JOUR AU - V. K. Andreev TI - On the solution properties of boundary problem simulating thermocapillary flow JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 31 EP - 40 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a1/ LA - ru ID - VYURU_2018_11_4_a1 ER -
%0 Journal Article %A V. K. Andreev %T On the solution properties of boundary problem simulating thermocapillary flow %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 31-40 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a1/ %G ru %F VYURU_2018_11_4_a1
V. K. Andreev. On the solution properties of boundary problem simulating thermocapillary flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 4, pp. 31-40. http://geodesic.mathdoc.fr/item/VYURU_2018_11_4_a1/
[1] V.K. Andreev et al., Mathematical Models of Convection, Walter de Gruyter GmbH CO KG, Berlin–Boston, 2012 | MR
[2] Tables of Physical Values, Atomizdat, M., 1976 (in Russian)
[3] Zeytounian R.Kh., “The Benard–Marangoni Thermocapillary-Instability Problem”, Physics–Uspekhi, 41:3 (1998), 241–267 | DOI
[4] K. Hiemenz, “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Digitalisierung des Polytechnischen Journals, 3326 (1911), 321–324 (in German)
[5] J.F. Brady, A. Acrivos, “Steady Flow in a Channel or Tube with an Accelerating Surface Velocity”, Journal of Fluid Mechanics, 112 (1981), 127–150 | DOI | MR | Zbl
[6] Ladyzhenskaya O. A., Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid, Nauka, M., 1970 (in Russian)
[7] V.K. Andreev, “Unsteady 2D Motions a Viscous Fluid Described by Partially Invariant Solutions to the Navier–Stokes Equations”, Journal of Siberian Federal University. Mathematics and Physics, 8:2 (2015), 140–147 | DOI | MR
[8] Andreev V. K., “On the Solution of an Inverse Problem Simulating Two-Dimensional Motion of a Viscous Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 9:4 (2016), 5–16 (in Russian) | DOI | Zbl
[9] Lavrentyev M. A., Shabat B. V., Methods of the Theory of Functions of a Complex Variable, Nauka, M., 1973 (in Russian)