Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise"
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 103-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Sobolev type equations theory has been an object of interest in recent years, with much attention being devoted to deterministic equations and systems. Still, there are also mathematical models containing random perturbation, such as white noise. A new concept of "white noise", originally constructed for finite dimensional spaces, is extended here to the case of infinite dimensional spaces. The main purpose is to develop stochastic higher-order Sobolev type equations theory and provide some practical applications. The main idea is to construct "noise" spaces using the Nelson–Gliklikh derivative. Abstract results concerning initial-final problems for higher order Sobolev type equations are applied to the Boussinesq–Love model with additive "white noise". We also use well-known methods in the investigation of Sobolev type equations, such as the phase space method, which reduces a singular equation to a regular one, as defined on some subspace of the initial space.
Keywords: Sobolev type equation; propagator; "white noise"; Wiener K-process; multipoint initial-final problem.
@article{VYURU_2018_11_3_a7,
     author = {G. A. Sviridyuk and A. A. Zamyshlyaeva and S. A. Zagrebina},
     title = {Multipoint initial-final problem for one class of {Sobolev} type models of higher order with additive "white noise"},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {103--117},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - A. A. Zamyshlyaeva
AU  - S. A. Zagrebina
TI  - Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise"
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 103
EP  - 117
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/
LA  - en
ID  - VYURU_2018_11_3_a7
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A A. A. Zamyshlyaeva
%A S. A. Zagrebina
%T Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise"
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 103-117
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/
%G en
%F VYURU_2018_11_3_a7
G. A. Sviridyuk; A. A. Zamyshlyaeva; S. A. Zagrebina. Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise". Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 103-117. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/