@article{VYURU_2018_11_3_a7,
author = {G. A. Sviridyuk and A. A. Zamyshlyaeva and S. A. Zagrebina},
title = {Multipoint initial-final problem for one class of {Sobolev} type models of higher order with additive "white noise"},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {103--117},
year = {2018},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/}
}
TY - JOUR AU - G. A. Sviridyuk AU - A. A. Zamyshlyaeva AU - S. A. Zagrebina TI - Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise" JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 103 EP - 117 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/ LA - en ID - VYURU_2018_11_3_a7 ER -
%0 Journal Article %A G. A. Sviridyuk %A A. A. Zamyshlyaeva %A S. A. Zagrebina %T Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise" %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 103-117 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/ %G en %F VYURU_2018_11_3_a7
G. A. Sviridyuk; A. A. Zamyshlyaeva; S. A. Zagrebina. Multipoint initial-final problem for one class of Sobolev type models of higher order with additive "white noise". Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 103-117. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a7/
[1] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems Not Solvable with Respect to the Highest Order Derivative, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 2003 | MR | Zbl
[2] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, 2011 | MR | Zbl
[3] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 1999 | MR | Zbl
[4] Kozhanov A. I., Boundary Problems for Odd Ordered Equations of Mathematical Physics, NGU, Novosibirsk, 1990 | MR
[5] Showalter R. E., Hilbert Space Methods for Partial Differential Equations, Pitman, London–San Francisco–Melbourne, 1977 | MR | Zbl
[6] Sidorov N., Loginov B., Sinithyn A., Falaleev M., Lyapunov–Shmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | MR
[7] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[8] Zamyshlyaeva A. A., Sviridyuk G. A., “The Linearized Benney–Luke Mathematical Model with Additive White Noise”, Springer Proceedings in Mathematics and Statistics, 113, 2015, 327–337 | DOI | MR | Zbl
[9] Bychkov E. V., “On a Semilinear Sobolev-Type Mathematical Model”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 111–117 | DOI | Zbl
[10] Zamyshlyaeva A. A., “The Higher Order Sobolev Type Models”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 5–28 | DOI | Zbl
[11] Melnikova I. V., Filinkov A. I., Alshansky M. A., “Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions”, Journal of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl
[12] Wang S., Chen G., “Small Amplitude Solutions of the Generalized IMBq Equation”, Mathematical Analysis and Applications, 274 (2002), 846–866 | DOI | MR | Zbl
[13] Whitham G. B., Linear and Nonlinear Waves, Wiley, N.Y., 1974 ; Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR | Zbl | MR
[14] Landau L. D., Lifshits E. M., Theoretical Phisics, v. VII, Elasticity Theory, Nauka, M., 1987 (in Russian) | MR
[15] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011 | MR | Zbl
[16] Gliklikh Yu.E., Mashkov E.Yu., “Stochastic Leontieff Type Equations and Mean Derivatives of Stochastic Processes”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 25–39 | MR | Zbl
[17] Zagrebina S. A., Soldatova E. A., Sviridyuk G. A., “The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline”, Springer Proceedings in Mathematics and Statistics, 113, 2015, 317–325 | DOI | MR | Zbl
[18] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, 44, Cambridge University Press, Cambridge, 1992 | MR | Zbl
[19] Arato M., Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, Lecture Notes in Control and Information Sciences, 45, Springer, Berlin, 1982 | DOI | MR | Zbl
[20] Kovács M., Larsson S., “Introduction to Stochastic Partial Differential Equations”, Proceedings of “New Directions in the Mathematical and Computer Sciences” (National Universities Commission, Abuja, Nigeria, October 8–12, 2007), Publications of the ICMCS, 4, 2008, 159–232 | MR | Zbl
[21] Favini A., Sviridyuk G., Manakova N., “Linear Sobolev Type Equations with Relatively $p$-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | MR | Zbl
[22] Favini A., Sviridyuk G., Sagadeeva M., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[23] Favini A., Sviridyuk G. A., Zamyshlyaeva A. A., “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2014), 185–196 | DOI | MR
[24] Nelson E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | MR | Zbl
[25] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[26] Keller A. V., Sagadeeva M. A., “The Optimal Measurement Problem for the Measurement Transducer Model with a Deterministic Multiplicative Effect and Inertia”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:1 (2014), 134–138 | DOI | Zbl
[27] Konkina A. S., “Multipoint Initial-Final Value Problem for the Model of Devis with Additive White Noise”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 10:2 (2017), 144–149 | DOI | Zbl
[28] Manakova N. A., “Mathematical Models and Optimal Control of the Filtration and Deformation Processes”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 8:3 (2015), 5–24 | DOI | Zbl
[29] Zagrebina S. A., “A Multipoint Initial-Final Value Problem for a Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 | DOI | Zbl