@article{VYURU_2018_11_3_a6,
author = {N. Sauer and J. Banasiak and W.-S. Lee},
title = {Causal relations in support of implicit evolution equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {85--102},
year = {2018},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/}
}
TY - JOUR AU - N. Sauer AU - J. Banasiak AU - W.-S. Lee TI - Causal relations in support of implicit evolution equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2018 SP - 85 EP - 102 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/ LA - en ID - VYURU_2018_11_3_a6 ER -
%0 Journal Article %A N. Sauer %A J. Banasiak %A W.-S. Lee %T Causal relations in support of implicit evolution equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2018 %P 85-102 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/ %G en %F VYURU_2018_11_3_a6
N. Sauer; J. Banasiak; W.-S. Lee. Causal relations in support of implicit evolution equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 85-102. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/
[1] Hille E., Phillips R. S., Functional Analysis and Semi-Groups, American Mathematical Society, Providence, 1957 | MR
[2] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel–Boston–Berlin, 2001 | MR | Zbl
[3] Sauer N., “Linear Evolution Equations in Two Banach Spaces”, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 91:3–4 (1982), 287–303 | DOI | MR | Zbl
[4] Kisyński J., “Around Widder's Characterization of the Laplace Transform of an Element of ${L}^{\infty}(\mathbb{R}^{+})$”, Annales Polonici Mathematici, 74 (2000), 161–200 | DOI | MR | Zbl
[5] Widder D. V., The Laplace Transform, Princeton University Press, Princeton, 1941 | MR
[6] Krein S. G., Linear Differential Operators in Banach Space, American Mathematical Society, Providence, 1972 | MR
[7] Sauer N., “Empathy Theory and the Laplace Transform”, Banach Center Publications, 38, Institute of Mathematics Polish Academy of Sciences, Warsaw, 1997, 325–338 | DOI | MR | Zbl
[8] Sauer N., Singleton J. E., “Evolution Operators Related to Semigroups of Class”, Semigroup Forum A, 35 (1987), 317–335 | DOI | MR | Zbl
[9] Sauer N., Van der Merwe A. J., “Eigenvalue Problems with the Spectral Parameter also in the Boundary Condition”, Quaestiones Mathematicae, 5:1 (1982), 1–27 | DOI | MR | Zbl
[10] Showalter R. E., “Partial Differential Equations of Sobolev–Galpern Type”, Pacific Journal of Mathematics, 31:3 (1969), 787–794 | DOI | MR
[11] Showalter R. E., Ting T. W., “Pseudo-Parabolic Partial Differential Equations”, Journal on Mathematical Analysis, 1:1 (1970), 214–231 | DOI | MR | Zbl
[12] Van der Merwe A. J., “B-Evolutions and Sobolev Equations”, Applicable Analysis, 29:1–2 (1988), 91–105 | DOI | MR | Zbl
[13] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, N.Y., 1998 | MR
[14] Belleni-Morante A., “$B$-Bounded Semigroups and Applications”, Annali di Matematica Pura ed Applicata. Serie Quarta, 170:1 (1996), 359–376 | DOI | MR | Zbl
[15] Belleni-Morante A., Totaro S., “The Successive Reflection Method in Three-Dimensional Particle Transport”, Journal of Mathematical Physics, 37:6 (1996), 2815–2823 | DOI | MR | Zbl
[16] Banasiak J., “Generation Results for $B$-Bounded Semigroups”, Annali di Matematica Pura ed Applicata. Serie Quarta, 175:1 (1998), 307–326 | DOI | MR | Zbl
[17] Arlotti L., “On $B$-Bounded Semigroups as a Generalization of $C_0$-Semigroups”, Zeitschrift für Analysis und ihre Anwendungen, 19:1 (2000), 23–34 | DOI | MR | Zbl
[18] Banasiak J., “$B$-Bounded Semigroups and Implicit Evolution Equations”, Abstract and Applied Analysis, 5:1 (2000), 13–32 | DOI | MR | Zbl
[19] Arlotti L., “A New Characterization of $B$-Bounded Semigroups with Application to Implicit Evolution Equations”, Abstract and Applied Analysis, 5:4 (2000), 227–243 | DOI | MR
[20] Banasiak J., Singh V., “$B$-Bounded Semigroups and $C$-Existence Families”, Taiwanese Journal of Mathematics, 6:1 (2002), 105–125 | DOI | MR | Zbl
[21] Haraux A., Linear Semigroups in Banach Spaces, Longman Scientific and Technical, Harlow, 1986 | MR
[22] Banasiak J., “$B$-Bounded Semigroups Existence Families and Implicit Evolution Equations”, Progress in Nonlinear Differential Equations and Their Applications, 42, Birkhäuser, Basel, 2000, 25–34 | MR | Zbl
[23] Atay F. M., Roncoroni L., “Lumpability of Linear Evolution Equations in Banach Spaces”, Evolution Equations and Control Theory, 6:1 (2017), 15–34 | DOI | MR | Zbl
[24] Sauer N., “The Friedrichs Extension of a Pair of Operators”, Quaestiones Mathematicae, 12:3 (1989), 239–249 | DOI | MR | Zbl
[25] Grobbelaar-Van Dalsen M., Sauer N., “Dynamic Boundary Conditions for the Navier–Stokes Equations”, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 113:1–2 (1989), 1–11 | DOI | MR | Zbl
[26] Van der Merwe A. J., “Closed Extensions of a Pair of Linear Operators and Dynamic Boundary Value Problems”, Applicable Analysis, 60:1–2 (1996), 85–98 | MR | Zbl
[27] Van der Merwe A. J., Perturbations of Evolution Equations, University of Pretoria, Pretoria, 1993 | MR
[28] Van der Merwe A. J., “Perturbations of Evolution Equations”, Applicable Analysis, 62:3–4 (1996), 367–380 | MR | Zbl
[29] Arendt W., “Vector-Valued Laplace Transforms and Cauchy Problems”, Israel Journal of Mathematics, 59:3 (1987), 327–352 | DOI | MR | Zbl
[30] Favini A., “Laplace Transform Method for a Class of Degenerate Evolution Problems”, Rend. Mat., 12 (1979), 511–536 | MR | Zbl
[31] Brown T. J., Sauer N., “Double Families of Integrated Evolution Operators”, Journal of Evolution Equations, 4:4 (2004), 567–590 | DOI | MR | Zbl
[32] Chojnacki W., “On the Equivalence of a Theorem of Kisyński and the Hille–Yosida Generation Theorem”, Proceedings of the American Mathematical Society, 126:2 (1998), 491–497 | DOI | MR | Zbl
[33] Lee W.-S., Sauer N., “An Algebraic Approach to Implicit Evolution Equations”, Bulletin of the Polish Academy of Sciences Mathematics, 63:1 (2015), 33–40 | DOI | MR | Zbl
[34] Lee W.-S., Sauer N., “Intertwined Evolution Operators”, Semigroup Forum, 94 (2017), 204–228 | DOI | MR | Zbl
[35] Lee W.-S., Sauer N., “Intertwined {M}arkov Processes: the Extended Chapman–Kolmogorov Equation”, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 148A (1994), 123–131 | MR