Causal relations in support of implicit evolution equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 85-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a brief exposition of dynamic systems approaches that form the basis for linear implicit evolution equations with some indication of interesting applications. Examples in infinite-dimensional dissipative systems and stochastic processes illustrate the fundamental notions underlying the use of double families of evolution equations intertwined by the empathy relation. Kisyński's equivalent formulation of the Hille–Yosida theorem highlights the essential differences between semigroup theory and the theory of empathy. The notion of K-bounded semigroups, a more direct approach to implicit equations, and related to empathy in a different way, is included in the survey.
Keywords: implicit equations; empathy theory; semigroups.
@article{VYURU_2018_11_3_a6,
     author = {N. Sauer and J. Banasiak and W.-S. Lee},
     title = {Causal relations in support of implicit evolution equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {85--102},
     year = {2018},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/}
}
TY  - JOUR
AU  - N. Sauer
AU  - J. Banasiak
AU  - W.-S. Lee
TI  - Causal relations in support of implicit evolution equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 85
EP  - 102
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/
LA  - en
ID  - VYURU_2018_11_3_a6
ER  - 
%0 Journal Article
%A N. Sauer
%A J. Banasiak
%A W.-S. Lee
%T Causal relations in support of implicit evolution equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 85-102
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/
%G en
%F VYURU_2018_11_3_a6
N. Sauer; J. Banasiak; W.-S. Lee. Causal relations in support of implicit evolution equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 85-102. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a6/

[1] Hille E., Phillips R. S., Functional Analysis and Semi-Groups, American Mathematical Society, Providence, 1957 | MR

[2] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel–Boston–Berlin, 2001 | MR | Zbl

[3] Sauer N., “Linear Evolution Equations in Two Banach Spaces”, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 91:3–4 (1982), 287–303 | DOI | MR | Zbl

[4] Kisyński J., “Around Widder's Characterization of the Laplace Transform of an Element of ${L}^{\infty}(\mathbb{R}^{+})$”, Annales Polonici Mathematici, 74 (2000), 161–200 | DOI | MR | Zbl

[5] Widder D. V., The Laplace Transform, Princeton University Press, Princeton, 1941 | MR

[6] Krein S. G., Linear Differential Operators in Banach Space, American Mathematical Society, Providence, 1972 | MR

[7] Sauer N., “Empathy Theory and the Laplace Transform”, Banach Center Publications, 38, Institute of Mathematics Polish Academy of Sciences, Warsaw, 1997, 325–338 | DOI | MR | Zbl

[8] Sauer N., Singleton J. E., “Evolution Operators Related to Semigroups of Class”, Semigroup Forum A, 35 (1987), 317–335 | DOI | MR | Zbl

[9] Sauer N., Van der Merwe A. J., “Eigenvalue Problems with the Spectral Parameter also in the Boundary Condition”, Quaestiones Mathematicae, 5:1 (1982), 1–27 | DOI | MR | Zbl

[10] Showalter R. E., “Partial Differential Equations of Sobolev–Galpern Type”, Pacific Journal of Mathematics, 31:3 (1969), 787–794 | DOI | MR

[11] Showalter R. E., Ting T. W., “Pseudo-Parabolic Partial Differential Equations”, Journal on Mathematical Analysis, 1:1 (1970), 214–231 | DOI | MR | Zbl

[12] Van der Merwe A. J., “B-Evolutions and Sobolev Equations”, Applicable Analysis, 29:1–2 (1988), 91–105 | DOI | MR | Zbl

[13] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, N.Y., 1998 | MR

[14] Belleni-Morante A., “$B$-Bounded Semigroups and Applications”, Annali di Matematica Pura ed Applicata. Serie Quarta, 170:1 (1996), 359–376 | DOI | MR | Zbl

[15] Belleni-Morante A., Totaro S., “The Successive Reflection Method in Three-Dimensional Particle Transport”, Journal of Mathematical Physics, 37:6 (1996), 2815–2823 | DOI | MR | Zbl

[16] Banasiak J., “Generation Results for $B$-Bounded Semigroups”, Annali di Matematica Pura ed Applicata. Serie Quarta, 175:1 (1998), 307–326 | DOI | MR | Zbl

[17] Arlotti L., “On $B$-Bounded Semigroups as a Generalization of $C_0$-Semigroups”, Zeitschrift für Analysis und ihre Anwendungen, 19:1 (2000), 23–34 | DOI | MR | Zbl

[18] Banasiak J., “$B$-Bounded Semigroups and Implicit Evolution Equations”, Abstract and Applied Analysis, 5:1 (2000), 13–32 | DOI | MR | Zbl

[19] Arlotti L., “A New Characterization of $B$-Bounded Semigroups with Application to Implicit Evolution Equations”, Abstract and Applied Analysis, 5:4 (2000), 227–243 | DOI | MR

[20] Banasiak J., Singh V., “$B$-Bounded Semigroups and $C$-Existence Families”, Taiwanese Journal of Mathematics, 6:1 (2002), 105–125 | DOI | MR | Zbl

[21] Haraux A., Linear Semigroups in Banach Spaces, Longman Scientific and Technical, Harlow, 1986 | MR

[22] Banasiak J., “$B$-Bounded Semigroups Existence Families and Implicit Evolution Equations”, Progress in Nonlinear Differential Equations and Their Applications, 42, Birkhäuser, Basel, 2000, 25–34 | MR | Zbl

[23] Atay F. M., Roncoroni L., “Lumpability of Linear Evolution Equations in Banach Spaces”, Evolution Equations and Control Theory, 6:1 (2017), 15–34 | DOI | MR | Zbl

[24] Sauer N., “The Friedrichs Extension of a Pair of Operators”, Quaestiones Mathematicae, 12:3 (1989), 239–249 | DOI | MR | Zbl

[25] Grobbelaar-Van Dalsen M., Sauer N., “Dynamic Boundary Conditions for the Navier–Stokes Equations”, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 113:1–2 (1989), 1–11 | DOI | MR | Zbl

[26] Van der Merwe A. J., “Closed Extensions of a Pair of Linear Operators and Dynamic Boundary Value Problems”, Applicable Analysis, 60:1–2 (1996), 85–98 | MR | Zbl

[27] Van der Merwe A. J., Perturbations of Evolution Equations, University of Pretoria, Pretoria, 1993 | MR

[28] Van der Merwe A. J., “Perturbations of Evolution Equations”, Applicable Analysis, 62:3–4 (1996), 367–380 | MR | Zbl

[29] Arendt W., “Vector-Valued Laplace Transforms and Cauchy Problems”, Israel Journal of Mathematics, 59:3 (1987), 327–352 | DOI | MR | Zbl

[30] Favini A., “Laplace Transform Method for a Class of Degenerate Evolution Problems”, Rend. Mat., 12 (1979), 511–536 | MR | Zbl

[31] Brown T. J., Sauer N., “Double Families of Integrated Evolution Operators”, Journal of Evolution Equations, 4:4 (2004), 567–590 | DOI | MR | Zbl

[32] Chojnacki W., “On the Equivalence of a Theorem of Kisyński and the Hille–Yosida Generation Theorem”, Proceedings of the American Mathematical Society, 126:2 (1998), 491–497 | DOI | MR | Zbl

[33] Lee W.-S., Sauer N., “An Algebraic Approach to Implicit Evolution Equations”, Bulletin of the Polish Academy of Sciences Mathematics, 63:1 (2015), 33–40 | DOI | MR | Zbl

[34] Lee W.-S., Sauer N., “Intertwined Evolution Operators”, Semigroup Forum, 94 (2017), 204–228 | DOI | MR | Zbl

[35] Lee W.-S., Sauer N., “Intertwined {M}arkov Processes: the Extended Chapman–Kolmogorov Equation”, Proceedings of the Royal Society of Edinburgh. Series A: Mathematics, 148A (1994), 123–131 | MR