Lord Kelvin and Andrey Andreyevich Markov in a queue with single server
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 29-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We use Lord Kelvin's method of images to show that a certain infinite system of equations with interesting boundary conditions leads to a Markovian dynamics in an $L^1$-type space. This system originates from the queuing theory.
Keywords: queue; method of images; generation theorem; boundary conditions; Markovian dynamics.
@article{VYURU_2018_11_3_a2,
     author = {A. Bobrowski},
     title = {Lord {Kelvin} and {Andrey} {Andreyevich} {Markov} in a queue with single server},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a2/}
}
TY  - JOUR
AU  - A. Bobrowski
TI  - Lord Kelvin and Andrey Andreyevich Markov in a queue with single server
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 29
EP  - 43
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a2/
LA  - en
ID  - VYURU_2018_11_3_a2
ER  - 
%0 Journal Article
%A A. Bobrowski
%T Lord Kelvin and Andrey Andreyevich Markov in a queue with single server
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 29-43
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a2/
%G en
%F VYURU_2018_11_3_a2
A. Bobrowski. Lord Kelvin and Andrey Andreyevich Markov in a queue with single server. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 29-43. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a2/