Population models with projection matrix with some negative entries — a solution to the Natchez paradox
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 18-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we consider the population the model of which, derived on the basis of ethnographical accounts, includes a projection matrix with both positive and negative entries. Interpreting the eventually negative trajectories as representing the collapse of the population, we use some classical tools from convex analysis to determine a cone containing the initial conditions that give rise to the persistence of both the population and its social structure.
Keywords: population theory; Natchez civilisation; convex cone; Perron–Frobenius theory; viability cone.
@article{VYURU_2018_11_3_a1,
     author = {J. Banasiak},
     title = {Population models with projection matrix with some negative entries~{\textemdash} a solution to the {Natchez} paradox},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {18--28},
     year = {2018},
     volume = {11},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a1/}
}
TY  - JOUR
AU  - J. Banasiak
TI  - Population models with projection matrix with some negative entries — a solution to the Natchez paradox
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2018
SP  - 18
EP  - 28
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a1/
LA  - en
ID  - VYURU_2018_11_3_a1
ER  - 
%0 Journal Article
%A J. Banasiak
%T Population models with projection matrix with some negative entries — a solution to the Natchez paradox
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2018
%P 18-28
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a1/
%G en
%F VYURU_2018_11_3_a1
J. Banasiak. Population models with projection matrix with some negative entries — a solution to the Natchez paradox. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 11 (2018) no. 3, pp. 18-28. http://geodesic.mathdoc.fr/item/VYURU_2018_11_3_a1/

[1] Cushing J. M., An Introduction to Structured Population Dynamics, SIAM, Philadelphia, 1998 | MR | Zbl

[2] Luenberger D. G., Introduction to Dynamic Systems: Theory, Models, and Applications, Wiley, N.Y., 1979 | Zbl

[3] Noutsos D., “On Perron–Frobenius Property of Matrices Having Some Negative Entries”, Linear Algebra and its Applications, 412:2 (2006), 132–153 | DOI | MR | Zbl

[4] Schneider H., Vidyasagar M., “Cross-Positive Matrices”, SIAM Journal on Numerical Analysis, 7:4 (1970), 508–519 | DOI | MR | Zbl

[5] Swanton J. R., Indian Tribes of the Lower Mississippi Valley and Adjacent Coast of the Gulf of Mexico, Dover Publications, N.Y., 2013

[6] Hart C., “A Reconstruction of the Natchez Social Structure”, American Anthropologist, 45 (1943), 374–386 | DOI

[7] Fischer J. L., “Solutions for the Natchez Paradox”, Ethnology, 3:1 (1964), 53–65 | DOI

[8] White D. R., Murdock G. P., Scaglion R., “Natchez Class and Rank Reconsidered”, Ethnology, 10:4 (1971), 369–388 | DOI

[9] Gritzmann P., Klee V., Tam B.-S., “Cross-Positive Matrices Revisited”, Linear Algebra and Its Applications, 223 (1995), 285–305 | DOI | MR | Zbl

[10] Fenchel W., Blackett D. W., Convex Cones, Sets, and Functions, Princeton University, Department of Mathematics, Logistics Research Project, 1953 | Zbl

[11] Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, 2015 | MR